Znaleziono 216 wyników

autor: piternet
3 wrz 2016, o 16:58
Forum: Ciągi i szeregi funkcyjne
Temat: Istnienie granicy szeregu funkcyjnego
Odpowiedzi: 2
Odsłony: 750

Istnienie granicy szeregu funkcyjnego

Rozważmy funkcję f: [0; +\infty] \rightarrow \mathbb{R} , daną wzorem:
f(x) = \sum\limits_{n=1}^{+\infty} \frac{(-1)^n \sin \frac{x}{n}}{n} . Czy istnieje \lim\limits_{x\rightarrow 0} f(x) ? Czy f jest różniczkowalna? Jeśli tak, to zbadaj czy f'(0) > 0 .

Mam następujące pytania co do tego: Czy ...
autor: piternet
2 wrz 2016, o 14:11
Forum: Ciągi i szeregi funkcyjne
Temat: Ciąg funkcyjny zbudowany z wielomianów Taylora
Odpowiedzi: 1
Odsłony: 592

Ciąg funkcyjny zbudowany z wielomianów Taylora

Wykaż, że dla każdej funkcji f: \mathbb{R} \rightarrow \mathbb{R} która ma nieskonczenie wiele pochodnych, jeżeli:
\forall _{n \geqslant 2015} \forall _{x \in \mathbb{R}} \left | f^{(n)}(x) \right | \leq 7
to ciąg funkcyjny \left \{ T _ {n, f, 0} \right \} _{n \geq 0} jest punktowo zbieżny do f ...
autor: piternet
28 sie 2016, o 17:44
Forum: Rachunek różniczkowy
Temat: Wymierne przybliżenie liczby
Odpowiedzi: 5
Odsłony: 620

Wymierne przybliżenie liczby

Co do tego małego otoczenia, to po prostu nie liczymy wielomianu Taylora dla całej dziedziny tej funkcji tylko w pewnym otoczeniu \sqrt{2} , tak? I co dokładnie nam to umożliwia? Bo nie rozumiem do końca co nam to daje.
Co do mojego oszacowania, no to liczę po kolei:
f(0) = 0
f'(x) = \frac{x^2 ...
autor: piternet
28 sie 2016, o 17:19
Forum: Rachunek różniczkowy
Temat: Wymierne przybliżenie liczby
Odpowiedzi: 5
Odsłony: 620

Wymierne przybliżenie liczby

Hmm, co dokładnie masz na myśli, mówiąc że to rozszerzymy?
Szczerze mówiąc, to nie jestem teraz juz pewien jak określic jakie pochodne potrzebujemy. W sensie wiem jak to zrobic ideowo, ale na tym przykładzie - wychodza straszne te pochodne + nie ma wzoru na n-tą pochodną, jak to jakoś najbardziej ...
autor: piternet
28 sie 2016, o 16:43
Forum: Rachunek różniczkowy
Temat: Wymierne przybliżenie liczby
Odpowiedzi: 5
Odsłony: 620

Wymierne przybliżenie liczby

Witam,

Mam znaleźć jakiekolwiek wymierne przybliżenie q liczby a = \frac{\sin(\sqrt{2})}{\sqrt{2}} z dokładnością do d = \frac{1}{500} .

Ogolnie znam sposób rozwiązywania takich zadan, przy pomocy rozwinięcia funkcji w wielomian Taylora i pewną resztę która możemy szacować z tw. Lagrange'a o ...
autor: piternet
27 sie 2016, o 15:44
Forum: Rachunek różniczkowy
Temat: Liczba pierwiastków równania
Odpowiedzi: 1
Odsłony: 347

Liczba pierwiastków równania

Witam,
Mam zadanie, w którym należy znaleźć liczbę pierwiastków x \in \mathbb{R} równania a^x = 2016x w zależności od parametru a > 0 .

Mam pytania co do poprawności mojego sposobu rozumowania oraz co do jego ścisłości.
Widzę to tak: Mamy dwie funkcje, jedna wykładniczą i jedną liniową y = 2016x ...
autor: piternet
8 cze 2016, o 19:28
Forum: Ciągi i szeregi funkcyjne
Temat: Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna
Odpowiedzi: 16
Odsłony: 2401

Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna

Wielkie dzięki, wszystko ogarnięte, tylko skąd jest że \(\displaystyle{ T'(0) = \sum_{n=0}^{\infty} g_n'(0) = \sqrt{2}.}\)?
Skąd ten pierwiastek z dwóch tam? Podstawiłem \(\displaystyle{ 0}\) i dostaje się \(\displaystyle{ T'(0) = \sum_{n=0}^{\infty} g_n'(0) = n \sqrt[n+1]{n+1}}\), ale to chyba rozbieżna suma?
autor: piternet
8 cze 2016, o 11:18
Forum: Ciągi i szeregi funkcyjne
Temat: Szereg funkcyjny, zbieżność, granica i różniczkowalność
Odpowiedzi: 1
Odsłony: 646

Szereg funkcyjny, zbieżność, granica i różniczkowalność

Witam,

Mam następujący ciąg funkcyjny:
f_{n}(x) = \frac{\arctg\left( {n^{\frac{1}{4}}x^{2}\right)}}{n^{\frac{3}{2}}} .
Teraz określona jest funkcja S: R \rightarrow R :
S(x) = \sum_{n=1}^{\infty} f_n (x)
Mam stwierdzić czy tak określona funkcja jest poprawnie określona, tj. że ten szereg ...
autor: piternet
7 cze 2016, o 15:00
Forum: Ciągi i szeregi funkcyjne
Temat: Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna
Odpowiedzi: 16
Odsłony: 2401

Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna

Wielkie, wielkie dzięki, zrozumiałem wreszcie całą ideę jaka sie za tym kryła.
Mam jeszcze tylko następujące pytanie: jak wyznaczyć te wartości granicy i pochodnej w 0?
autor: piternet
6 cze 2016, o 14:28
Forum: Ciągi i szeregi funkcyjne
Temat: Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna
Odpowiedzi: 16
Odsłony: 2401

Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna

No okej, czyli punktowo jest zbieżny, zatem funkcja S jest istotnie dobrze zdefiniowana.
Mam jeszce stwierdzić czy istnieją granica i pochodna S w 0. Pochodna na pewno nie, bo S nie jest jednostajna, a jak z granicą?
autor: piternet
6 cze 2016, o 00:57
Forum: Ciągi i szeregi funkcyjne
Temat: Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna
Odpowiedzi: 16
Odsłony: 2401

Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna

Ale żeby funkcja S: \left( -1; 1\right) \rightarrow R zdefiniowana tak:
S(x) = \sum_{n=0}^{\infty} f_{n}(x) była poprawnie określona, czyli żeby szereg liczbowy był zbieżny dla wszystkich x \in \left( -1; 1\right) , przy czym w treści jest po prostu zbieżny , niekoniecznie jednostajnie, więc ...
autor: piternet
6 cze 2016, o 00:17
Forum: Ciągi i szeregi funkcyjne
Temat: Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna
Odpowiedzi: 16
Odsłony: 2401

Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna

Zauważyłem teraz, że w treści przy części z szeregiem jest przedział otwarty - \left( -1; 1\right) . Teraz trzeba by więc wziąć ten sam ciąg na tym przedziale i pokazać że jest jednostajnie zbieżny do 0?
Nie wiem natomiast jak to pokazać przy użyciu tej normy supremum, mając juz tego kandydata w ...
autor: piternet
5 cze 2016, o 23:36
Forum: Ciągi i szeregi funkcyjne
Temat: Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna
Odpowiedzi: 16
Odsłony: 2401

Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna

Racja, pomyliłem się, oczywiście ciąg stały równy 0.
Jaki jest natomiast wniosek z tego, że funkcje są ciągłe, a ich granica punktowa nie? Jeśli granica punktowa jest nieciągła to nie ma zbieżność jednostajnej?
autor: piternet
5 cze 2016, o 22:58
Forum: Ciągi i szeregi funkcyjne
Temat: Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna
Odpowiedzi: 16
Odsłony: 2401

Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna

No dobra, to punktowo będzie chyba tak, że dla \(\displaystyle{ x=-1}\) będzie brak zbieżności, dla \(\displaystyle{ x=1}\) będzie to \(\displaystyle{ 1}\) a dla reszty \(\displaystyle{ 0}\)? I ta funkcja ma być kandydatem?
autor: piternet
5 cze 2016, o 19:07
Forum: Ciągi i szeregi funkcyjne
Temat: Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna
Odpowiedzi: 16
Odsłony: 2401

Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna

Dla każdego n \ge 0 określamy funkcję f_{n}: \left[ -1; 1\right] \rightarrow R wzorem:
f_{n}(x) = \sqrt[n+1]{n+1} \left( \frac{x +x^2}{2} \right) ^n .

Teraz tak. Mam po pierwsze zbadać czy ciąg określony takim wzorem jest jednostajnie zbieżny.
Skorzystałem tu z normy supremum i faktu mowiącego że ...