Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna

Istnienie i ciągłość funkcji granicznej, jednostajna zbieżność. Zmiana kolejności przejścia granicznego. Różniczkowanie i całkowanie szeregów. Istnienie i zbieżność rozwinięć Taylora, Maclaurina, Fouriera itd.
piternet
Użytkownik
Użytkownik
Posty: 215
Rejestracja: 13 kwie 2010, o 19:15
Płeć: Mężczyzna
Lokalizacja: Radom
Podziękował: 37 razy
Pomógł: 15 razy

Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna

Post autor: piternet »

Dla każdego \(\displaystyle{ n \ge 0}\) określamy funkcję \(\displaystyle{ f_{n}: \left[ -1; 1\right] \rightarrow R}\) wzorem:
\(\displaystyle{ f_{n}(x) = \sqrt[n+1]{n+1} \left( \frac{x +x^2}{2} \right) ^n}\).

Teraz tak. Mam po pierwsze zbadać czy ciąg określony takim wzorem jest jednostajnie zbieżny.
Skorzystałem tu z normy supremum i faktu mowiącego że \(\displaystyle{ f_n}\) jest jednostajnie zbieżny do \(\displaystyle{ f}\) wtw gdy \(\displaystyle{ \left| \left| f_n - f\right| \right| \rightarrow 0}\), gdzie ten podwojny moduł to norma supremum. Tyle że supremum będzie gdy weźmiemy \(\displaystyle{ x=1}\), wtedy mamy po prostu \(\displaystyle{ \sqrt[n+1]{n+1}}\) i to dąży do 1, nie do 0. Czyli dany ciąg funkcyjny nie zbiega jednostajnie do zera. Czy natomiast zbiega jednostajnie do innej funkcji? Jeśli tak to jak ją dobrać?

Dalej mam wykazać, że funkcja która jest szeregiem o wyrazie będącym \(\displaystyle{ f_n}\) jest dobrze zdefiniowana. Czyli szereg ten dla każdego x musi być zbieżny, co najmniej punktowo. Natomiast z warunku koniecznego, wiemy że jesli ten wyraz nie zbiega jednostajnie do 0, to szereg nie bedzie zbiezny. Natomiast z pierwszego punktu wyszło ze nie jest zbiezny do 0. Więc mam sprzeczność.

Wyjaśni ktoś o co w ogóle chodzi i gdzie jest błąd?
M Maciejewski
Użytkownik
Użytkownik
Posty: 318
Rejestracja: 14 maja 2016, o 16:25
Płeć: Mężczyzna
Lokalizacja: Toruń
Pomógł: 90 razy

Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna

Post autor: M Maciejewski »

Pierwsza część rozumowania jest niepotrzebna. Nie ma co badać zbieżności do zera. Najpierw trzeba znaleźć granicę punktową. Dla każdego \(\displaystyle{ x\in [-1,1]}\) należy sprawdzić, do czego zbiega ciąg \(\displaystyle{ f_n(x)}\). Wtedy kładziemy \(\displaystyle{ f(x)=\lim_nf_n(x)}\). Tak określoną funkcję traktujemy jako kandydata (jedynego możliwego) na granicę jednostajną.
piternet
Użytkownik
Użytkownik
Posty: 215
Rejestracja: 13 kwie 2010, o 19:15
Płeć: Mężczyzna
Lokalizacja: Radom
Podziękował: 37 razy
Pomógł: 15 razy

Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna

Post autor: piternet »

No dobra, to punktowo będzie chyba tak, że dla \(\displaystyle{ x=-1}\) będzie brak zbieżności, dla \(\displaystyle{ x=1}\) będzie to \(\displaystyle{ 1}\) a dla reszty \(\displaystyle{ 0}\)? I ta funkcja ma być kandydatem?
Awatar użytkownika
Premislav
Użytkownik
Użytkownik
Posty: 15688
Rejestracja: 17 sie 2012, o 13:12
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 196 razy
Pomógł: 5221 razy

Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna

Post autor: Premislav »

Gdy ja podstawiam \(\displaystyle{ x=-1}\), to mi wychodzi ciąg stale równy zero, nie wiem, dlaczego twierdzisz, że miałoby nie być zbieżności.


W każdym razie dla każdego \(\displaystyle{ n}\) funkcje \(\displaystyle{ f_{n}}\) są ciągłe, a granica punktowa nie.
piternet
Użytkownik
Użytkownik
Posty: 215
Rejestracja: 13 kwie 2010, o 19:15
Płeć: Mężczyzna
Lokalizacja: Radom
Podziękował: 37 razy
Pomógł: 15 razy

Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna

Post autor: piternet »

Racja, pomyliłem się, oczywiście ciąg stały równy 0.
Jaki jest natomiast wniosek z tego, że funkcje są ciągłe, a ich granica punktowa nie? Jeśli granica punktowa jest nieciągła to nie ma zbieżność jednostajnej?
Awatar użytkownika
Premislav
Użytkownik
Użytkownik
Posty: 15688
Rejestracja: 17 sie 2012, o 13:12
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 196 razy
Pomógł: 5221 razy

Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna

Post autor: Premislav »

Zgadza się. Jest takie twierdzenie, że jeśli ciąg \(\displaystyle{ f_{n}}\) funkcji ciągłych jest zbieżny jednostajnie do pewnej \(\displaystyle{ f}\) w zbiorze \(\displaystyle{ D}\), to również \(\displaystyle{ f}\) jest funkcją ciągłą w \(\displaystyle{ D}\). No to przez kontrapozycję mamy własnie to, co zasugerowałem, a Ty napisałeś.

Dziwi mnie wobec tego polecenie z zadania, tym bardziej, że Twoje uwagi o niespełnianiu warunku koniecznego - to odnośnie szeregu (a ma to miejsce dla \(\displaystyle{ x=1}\)) są zasadne.
piternet
Użytkownik
Użytkownik
Posty: 215
Rejestracja: 13 kwie 2010, o 19:15
Płeć: Mężczyzna
Lokalizacja: Radom
Podziękował: 37 razy
Pomógł: 15 razy

Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna

Post autor: piternet »

Zauważyłem teraz, że w treści przy części z szeregiem jest przedział otwarty - \(\displaystyle{ \left( -1; 1\right)}\). Teraz trzeba by więc wziąć ten sam ciąg na tym przedziale i pokazać że jest jednostajnie zbieżny do 0?
Nie wiem natomiast jak to pokazać przy użyciu tej normy supremum, mając juz tego kandydata w postaci funkcji stale równego 0.
M Maciejewski
Użytkownik
Użytkownik
Posty: 318
Rejestracja: 14 maja 2016, o 16:25
Płeć: Mężczyzna
Lokalizacja: Toruń
Pomógł: 90 razy

Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna

Post autor: M Maciejewski »

Jeśli \(\displaystyle{ f_n}\) zbiega jednostajnie na ma przykład \(\displaystyle{ (0,1)}\) oraz zbiega punktowo w \(\displaystyle{ 1}\), to zbiega jednostajnie na \(\displaystyle{ (0,1]}\). Tak więc nie ma zbieżności jednostajnej na \(\displaystyle{ (-1,1)}\), bo gdyby była, to byłaby też zbieżność na\(\displaystyle{ (-1,1]}\), a zauważyliśmy/-ście, że nie ma.-- 6 cze 2016, o 00:39 --Dowód bezpośredni:
\(\displaystyle{ \|f_n\|=\sup_{x\in(-1,1)}|f_n(x)| = \sqrt[n+1]{n+1}\cdot
\sup_{x\in(-1,1)}\left| \frac{x +x^2}{2} \right| ^n}\)

\(\displaystyle{ =\sqrt[n+1]{n+1}\cdot
\left(\sup_{x\in(-1,1)}\left| \frac{x +x^2}{2} \right|\right) ^n
=\sqrt[n+1]{n+1}\cdot
1 ^n\to 1.}\)

Tak więc na pewno \(\displaystyle{ f_n}\) nie zbiega jednostajnie do \(\displaystyle{ 0}\).
piternet
Użytkownik
Użytkownik
Posty: 215
Rejestracja: 13 kwie 2010, o 19:15
Płeć: Mężczyzna
Lokalizacja: Radom
Podziękował: 37 razy
Pomógł: 15 razy

Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna

Post autor: piternet »

Ale żeby funkcja \(\displaystyle{ S: \left( -1; 1\right) \rightarrow R}\) zdefiniowana tak:
\(\displaystyle{ S(x) = \sum_{n=0}^{\infty} f_{n}(x)}\) była poprawnie określona, czyli żeby szereg liczbowy był zbieżny dla wszystkich \(\displaystyle{ x \in \left( -1; 1\right)}\), przy czym w treści jest po prostu zbieżny, niekoniecznie jednostajnie, więc wystarczy zbieżność punktowa?
Jesli tak to jak własciwie pokazać ją dla szeregu? Wystarczy dokładnie to samo co dla ciągu?
M Maciejewski
Użytkownik
Użytkownik
Posty: 318
Rejestracja: 14 maja 2016, o 16:25
Płeć: Mężczyzna
Lokalizacja: Toruń
Pomógł: 90 razy

Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna

Post autor: M Maciejewski »

piternet pisze:Ale żeby funkcja \(\displaystyle{ S: \left( -1; 1\right) \rightarrow R}\) zdefiniowana tak:
\(\displaystyle{ S(x) = \sum_{n=0}^{\infty} f_{n}(x)}\) była poprawnie określona, czyli żeby szereg liczbowy był zbieżny dla wszystkich \(\displaystyle{ x \in \left( -1; 1\right)}\), przy czym w treści jest po prostu zbieżny, niekoniecznie jednostajnie, więc wystarczy zbieżność punktowa?
Jesli tak to jak własciwie pokazać ją dla szeregu? Wystarczy dokładnie to samo co dla ciągu?
Wystarczy punktowa, aby funkcja \(\displaystyle{ S}\) była dobrze zdefiniowana. Ale jednostajna zbieżność daje dodatkową ważną informację, z której wynikają własności \(\displaystyle{ S}\). Metoda na zbadanie j.cg. to np warunek normowej zbieżności, tw. Abela lub Dirichleta. Na YT mam filmy na ten temat (zbieżność ciągów funkcyjnych i zbieżność szeregów funkcyjnych).
piternet
Użytkownik
Użytkownik
Posty: 215
Rejestracja: 13 kwie 2010, o 19:15
Płeć: Mężczyzna
Lokalizacja: Radom
Podziękował: 37 razy
Pomógł: 15 razy

Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna

Post autor: piternet »

No okej, czyli punktowo jest zbieżny, zatem funkcja S jest istotnie dobrze zdefiniowana.
Mam jeszce stwierdzić czy istnieją granica i pochodna S w 0. Pochodna na pewno nie, bo S nie jest jednostajna, a jak z granicą?
M Maciejewski
Użytkownik
Użytkownik
Posty: 318
Rejestracja: 14 maja 2016, o 16:25
Płeć: Mężczyzna
Lokalizacja: Toruń
Pomógł: 90 razy

Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna

Post autor: M Maciejewski »

piternet pisze: Mam jeszce stwierdzić czy istnieją granica i pochodna S w 0. Pochodna na pewno nie, bo S nie jest jednostajna, a jak z granicą?
Niejasne pytanie. Jak rozumiem, masz sprawdzić jednostajną zbieżność, a nie badać pochodne.
Awatar użytkownika
Dasio11
Moderator
Moderator
Posty: 10255
Rejestracja: 21 kwie 2009, o 19:04
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 41 razy
Pomógł: 2376 razy

Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna

Post autor: Dasio11 »

piternet pisze:Mam jeszce stwierdzić czy istnieją granica i pochodna S w 0. Pochodna na pewno nie, bo S nie jest jednostajna, a jak z granicą?
To twierdzenie działa tylko w jedną stronę. Nie można z braku jednostajnej zbieżności wywnioskować nieróżniczkowalności sumy szeregu.

Oznaczmy tak:

\(\displaystyle{ g_n(y) = \sqrt[n+1]{n+1} \cdot y^n \\[1ex]
y(x) = \frac{x^2+x}{2} \\[1ex]
T(y) = \sum_{n=0}^{\infty} g_n(y).}\)


Wtedy

\(\displaystyle{ f_n(x) = g_n(y(x)) \\[1ex]
S(x) = T(y(x)).}\)


Zamierzamy pokazać, że \(\displaystyle{ S(x)}\) ma granicę w \(\displaystyle{ 0}\) i co więcej jest tam różniczkowalna, a ponieważ \(\displaystyle{ \lim_{x \to 0} y(x) = 0}\) oraz \(\displaystyle{ y(x)}\) jest różniczkowalna w zerze, więc pozostaje obie własności wykazać dla funkcji \(\displaystyle{ T(y).}\)

Inaczej mówiąc, fragment funkcji \(\displaystyle{ f_n(x)}\) obliczający \(\displaystyle{ \frac{x^2+x}{2}}\) jest nieistotny dla zagadnienia, więc można go wydzielić.


No to teraz tak:

\(\displaystyle{ \bullet}\) Ciąg \(\displaystyle{ \sqrt[n+1]{n+1}}\) jest zbieżny do \(\displaystyle{ 1,}\) więc jest ograniczony przez pewną liczbę \(\displaystyle{ M.}\) Dla \(\displaystyle{ y \in \left( - \frac{1}{2}, \frac{1}{2} \right)}\) mamy

\(\displaystyle{ |g_n(y)| \le \sqrt[n+1]{n+1} \cdot \left( \frac{1}{2} \right)^n \le \frac{M}{2^n},}\)

więc na mocy kryterium Weierstrassa szereg

\(\displaystyle{ T(y) = \sum_{n=0}^{\infty} g_n(y)}\)

jest jednostajnie zbieżny, a ponieważ funkcje \(\displaystyle{ g_n(y)}\) są ciągłe, więc \(\displaystyle{ T(y)}\) jest ciągła na \(\displaystyle{ \left( -\frac{1}{2}, \frac{1}{2} \right),}\) zatem w szczególności w punkcie \(\displaystyle{ 0.}\)


\(\displaystyle{ \bullet}\) Dla \(\displaystyle{ y \in \left( -\frac{1}{2}, \frac{1}{2} \right)}\) mamy

\(\displaystyle{ g_n'(y) = n \cdot \sqrt[n+1]{n+1} \cdot y^{n-1} \\[2ex]
|g_n'(y)| \le M \cdot \frac{n}{2^{n-1}},}\)


zatem szereg

\(\displaystyle{ \sum_{n=0}^{\infty} g_n'(y)}\)

jest jednostajnie zbieżny na \(\displaystyle{ \left( -\frac{1}{2}, \frac{1}{2} \right),}\) więc funkcja \(\displaystyle{ T(y)}\) jest na tym przedziale różniczkowalna, zatem w szczególności w punkcie \(\displaystyle{ 0.}\)


\(\displaystyle{ \bullet}\) Jak widać, brak jednostajnej zbieżności nie powoduje nieciągłości ani nieróżniczkowalności sumy szeregu funkcyjnego. Jednostajna zbieżność psuje się bowiem w okolicy punktu \(\displaystyle{ y = 1,}\) a nas interesuje punkt \(\displaystyle{ y = 0,}\) który można objąć mniejszym otoczeniem, na którym zbieżność jednostajna już zachodzi.
piternet
Użytkownik
Użytkownik
Posty: 215
Rejestracja: 13 kwie 2010, o 19:15
Płeć: Mężczyzna
Lokalizacja: Radom
Podziękował: 37 razy
Pomógł: 15 razy

Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna

Post autor: piternet »

Wielkie, wielkie dzięki, zrozumiałem wreszcie całą ideę jaka sie za tym kryła.
Mam jeszcze tylko następujące pytanie: jak wyznaczyć te wartości granicy i pochodnej w 0?
Awatar użytkownika
Dasio11
Moderator
Moderator
Posty: 10255
Rejestracja: 21 kwie 2009, o 19:04
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 41 razy
Pomógł: 2376 razy

Zbadać zbieżność ciągu i szeregu funkcyjnego, lim i pochodna

Post autor: Dasio11 »

\(\displaystyle{ T}\) oraz \(\displaystyle{ y}\) są ciągłe, więc

\(\displaystyle{ \lim_{x \to 0} y(x) = y(0) = 0 \\
\lim_{x \to 0} S(x) = \lim_{x \to 0} T(y(x)) = T(0) = \sum_{n=0}^{\infty} \sqrt[n+1]{n+1} \cdot 0^n = 1.}\)


Mamy też

\(\displaystyle{ T'(y) = \sum_{n=0}^{\infty} g_n'(y),}\)

więc

\(\displaystyle{ T'(0) = \sum_{n=0}^{\infty} g_n'(0) = \sqrt{2}.}\)
ODPOWIEDZ