Znaleziono 70 wyników

autor: wjzz
12 maja 2008, o 23:40
Forum: Równania różniczkowe i całkowe
Temat: Równanie rózniczkowe rzędu I
Odpowiedzi: 3
Odsłony: 856

Równanie rózniczkowe rzędu I

Witam, mam do rozwiązania równanie różniczkowe zmian temperatury:

rVc\cdot \frac{dT}{dt}=P+rQc ft( T _{i} -T\right)

gdzie: r, V, c, P, Q, T_{i} są stałymi

Zacznijmy od wywalenia tych wszystkich stałych:

rVc\cdot \frac{dT}{dt}=P+rQcT_{i} -rQcT

\frac{dT}{dt}=\frac{P+rQcT_{i}}{rVc} -\frac ...
autor: wjzz
12 maja 2008, o 20:00
Forum: Algebra abstrakcyjna
Temat: Klasa abstrakcji podgrupą
Odpowiedzi: 3
Odsłony: 908

Klasa abstrakcji podgrupą

Żeby mówić o klasach abstrakcji, to trzeba najpierw ustalić o jakiej relacji równoważności mówimy. Inaczej to w zadaniu brakuje najważniejszej informacji.
autor: wjzz
12 maja 2008, o 19:54
Forum: Zbiory. Teoria mnogości
Temat: częściowy porządek
Odpowiedzi: 2
Odsłony: 875

częściowy porządek

Wychodzi mi, że tak.

(Oznaczam słowo puste przez \epsilon .)

Dowód: Musimy sprawdzić czy relacja R jest:

1. Zwrotna: Tak, bo dla dowolnego słowa w mamy: w = \epsilon w \epsilon , czyli w R w

2. (Słabo) antysymetryczna: Niech w_1\ R\ w_2 oraz w_2\ R\ w_1 . Pokażemy, że wtedy w_1 = w_2 .
Z ...
autor: wjzz
12 maja 2008, o 00:07
Forum: Geometria trójkąta
Temat: trójkąt równoramienny
Odpowiedzi: 1
Odsłony: 613

trójkąt równoramienny

Zauważ, że skoro trójkąt jest równoramienny, to jeśli przez O oznaczymy środek okręgu opisanego na trójkącie ABC to odcinek OC musi w całości należeć do wysokości opuszczonej bok AB. Oznaczmy więc przez x odcinek OD. Wtedy h = r + x . Rozważmy teraz trójkąt ABO. Środek okręgu opisanego na ABC musi ...
autor: wjzz
11 maja 2008, o 23:48
Forum: Zbiory. Teoria mnogości
Temat: zbiór częściowo uporządkowany
Odpowiedzi: 2
Odsłony: 1001

zbiór częściowo uporządkowany

Czy (F(N), ) jest zbiorem częściowo uporządkowanym?
Tak. Tak naprawdę, to dla dowolnego zbioru A, (A, ) jest częściowym porządkiem. Jest tak dlatego, że dla dowolnych zbiorów A,B,C zachodzi:

A A
A B B A A = B
A B B C A = C

A to dokładnie zapewnia nam wymagane: zwrotność, (słabą ...
autor: wjzz
11 maja 2008, o 23:17
Forum: Konstrukcje i geometria wykreślna
Temat: trojkat
Odpowiedzi: 1
Odsłony: 832

trojkat

Opis konstrukcji:

1. Skontruuj okrąg opisany na trójkącie ABC (konstruując symetralne dowolnych dwu z trzech boków tego trójkąta)

2. Skonstruuj symetralną boku AC. Ponieważ trójkąt jest równoramienny, to przejdzie ona przez wierzchołek B.

3. Szukanym punktem D jest punkt przecięcia okręgu z ...
autor: wjzz
10 maja 2008, o 22:58
Forum: Geometria trójkąta
Temat: Trojkat z serii udowodnij, ze[...]
Odpowiedzi: 2
Odsłony: 590

Trojkat z serii udowodnij, ze[...]

Oznaczmy długość okręgu wpisanego przez r, pole trójkata przez S, boki tego trójkąta przez a,b,c, odpowiednie wysokości zaś h_a, h_b, h_c . Ze wzoru:

S = \frac{r(a+b+c)}{2}

Obliczamy r: r = \frac{2S}{a+b+c}

Warunek z zadania:

h_a + h_b + h_c = 9r

Wiemy, że a * h_a = 2S itd, więc mamy ...
autor: wjzz
10 maja 2008, o 21:43
Forum: Przekształcenia algebraiczne
Temat: Dwie nierówności
Odpowiedzi: 1
Odsłony: 446

Dwie nierówności

1 a,b,c R_+ oraz abc(a+b+c)=1 Udowodnij, że
(a+b)(a+c) qslant 2

Działamy w liczbach dodatnich, więc abc(a+b+c)=1 a(a+b+c) = \frac{1}{bc}

Mamy: (a+b)(a+c) = a^2 + ac + ab + bc = a(a+b+c) + bc = \frac{1}{bc} + bc qslant 2 , przy czym ostatnie przejście wynika z

Lemat . Jeśli x R_+ to x + \frac ...
autor: wjzz
10 maja 2008, o 21:32
Forum: Rachunek różniczkowy
Temat: Punkty podejrzane o ekstrema.
Odpowiedzi: 8
Odsłony: 833

Punkty podejrzane o ekstrema.

Tak. Najważniejsze jest to, że z obu równań dostajemy po dwie alternatywy. Układ rownań to koniunkcja, więc trzeba rozważyć cztery przypadki, z których dwa odpadąją.
autor: wjzz
10 maja 2008, o 21:29
Forum: Funkcje trygonometryczne i cyklometryczne
Temat: Uzasadni, że tg+ctg+....
Odpowiedzi: 2
Odsłony: 803

Uzasadni, że tg+ctg+....

Zrobię pierwszy podpunkt, drugi robi się analogicznie:

1. Dla skrótu oznaczam x = \frac{\pi}{9} . Będę tak długo przekształcał to równanie aż dojdę do czegoś co wiemy, że jest prawdziwe.

Następujące równania są równoważne

\sqrt{3} ctg x -4cos x=1 { ctg{x}} = \frac{\cos{x}}{\sin{x}} }

\sqrt{3 ...
autor: wjzz
10 maja 2008, o 21:12
Forum: Rachunek różniczkowy
Temat: Punkty podejrzane o ekstrema.
Odpowiedzi: 8
Odsłony: 833

Punkty podejrzane o ekstrema.

Dwa. Z pierwszego masz (o ile dobrze liczę ) \(\displaystyle{ y = 2(\sqrt{2} - 1) y = -2(\sqrt{2} + 1)}\)

Rozwiązanie układu równań musi być rozwiązaniem jednego i drugiego. Nie może być jednocześnie \(\displaystyle{ y = 2(\sqrt{2} - 1)}\) i \(\displaystyle{ y = -2}\).
autor: wjzz
10 maja 2008, o 21:00
Forum: Rachunek różniczkowy
Temat: Punkty podejrzane o ekstrema.
Odpowiedzi: 8
Odsłony: 833

Punkty podejrzane o ekstrema.

\(\displaystyle{ 2xy + 4x = 0 \iff 2x(y + 2) = 0 \iff x = 0 y = -2}\)

Gdzie poleciał x? Przez zero nie dzielimy ...
autor: wjzz
10 maja 2008, o 20:36
Forum: Analiza wyższa i funkcjonalna
Temat: Wartości funkcji dwóch zmiennych.
Odpowiedzi: 7
Odsłony: 1637

Wartości funkcji dwóch zmiennych.

Nie napisałeś o jaką dokładnie funkcję Ci chodzi, ale z tego co rozumiem to nie w tym problem. Żeby rozważyć przypadek \(\displaystyle{ x = 0}\) to najprościej zdefiniować pomocniczą funkcję (np. g) jednej zmiennej y w ten sposób:
\(\displaystyle{ g(y) = f(0,y)}\)
Funkcję g badasz już "normalnie".
autor: wjzz
10 maja 2008, o 20:30
Forum: Rachunek różniczkowy
Temat: Punkty podejrzane o ekstrema.
Odpowiedzi: 8
Odsłony: 833

Punkty podejrzane o ekstrema.

Napisz jakie Ci wyszły te pochodne to zobaczymy - u mnie pojawiają się obie zmienne
autor: wjzz
10 maja 2008, o 20:24
Forum: Analiza wyższa i funkcjonalna
Temat: Wartości funkcji dwóch zmiennych.
Odpowiedzi: 7
Odsłony: 1637

Wartości funkcji dwóch zmiennych.

Jeżeli szukasz ekstremów, to wystarczy policzyć różniczek zupełnych I i II stopnia i następnie wyznaczyć, które z punktów mieszczą się na tym obszarze. Gdybyś jednak miał jako zadanie wyznaczenie wartości największej i najmniejszej funkcji w tym obszarze, to wtedy trzeba też osobno zbadać co się ...