Znaleziono 115 wyników

autor: djlinux
11 mar 2013, o 18:49
Forum: Równania różniczkowe i całkowe
Temat: Sprawdzenie poprawności rozwiązania równania
Odpowiedzi: 0
Odsłony: 342

Sprawdzenie poprawności rozwiązania równania

Witam
Moje równanie:
\(\displaystyle{ \ddfrac {x}{t}= \exp \left( \frac {x}{t} \right) + \frac {x} {t} \\
x \left( 1 \right) = 0}\)


Rozwiązanie :
\(\displaystyle{ x \left( t \right) = -t \cdot \ln \left| -\ln \left| t \right| + 1 \right|}\)

Wszystko w porządku w rozwiązaniu, z wartością bezwzględną? Proszę o sprawdzenie.
autor: djlinux
26 lut 2013, o 15:22
Forum: Rachunek całkowy
Temat: Transformata Laplace'a delty Diraca
Odpowiedzi: 2
Odsłony: 2387

Transformata Laplace'a delty Diraca

\(\displaystyle{ \int_{- \infty }^{ \infty } \delta(t) dt = 1}\)
\(\displaystyle{ \delta(t) = \begin{cases} +\infty, t=0 \\ 0 , t \neq 0 \end{cases}}\)

A tutaj (w transformacie Laplace'a) są granice całkowania od 0 do nieskończoności.
autor: djlinux
26 lut 2013, o 15:14
Forum: Rachunek całkowy
Temat: Transformata Laplace'a delty Diraca
Odpowiedzi: 2
Odsłony: 2387

Transformata Laplace'a delty Diraca

Jak rozpisać coś takiego? Zależy mi na pokazaniu z definicji.
\(\displaystyle{ \int_{0}^{ \infty } \delta(t) * e ^ {- s t} dt}\)
autor: djlinux
23 lut 2013, o 16:55
Forum: Rachunek całkowy
Temat: Całka rekurencyjna, transformata Laplace'a
Odpowiedzi: 5
Odsłony: 474

Całka rekurencyjna, transformata Laplace'a

Pierwszy krok robisz niepoprawnie:

\mathcal{I}(n) = \int_{0}^{ \infty } e^{-s t} * t ^{n} dt=\\
\\
\left.-\frac{t^ne^{-st}}{s}\right|_{0}^{\infty}+\frac{n}{s}\mathcal{I}(n-1)
...
Napisałem to w pierwszym poście(jako całka nieoznaczona). Ale teraz widzę, że będzie się tylko liczył ten składnik ...
autor: djlinux
23 lut 2013, o 16:36
Forum: Rachunek całkowy
Temat: Całka rekurencyjna, transformata Laplace'a
Odpowiedzi: 5
Odsłony: 474

Całka rekurencyjna, transformata Laplace'a

Przez części to wiem, wzór na n-tą całkę to (proszę o sprawdzenie):
\(\displaystyle{ \frac{- e ^{-s t}}{s} * \sum_{i=0}^{n} * \frac{n! * t^{n-i}}{(n-i)! * s^{i}}}\) ?
autor: djlinux
23 lut 2013, o 15:32
Forum: Rachunek całkowy
Temat: Całka rekurencyjna, transformata Laplace'a
Odpowiedzi: 5
Odsłony: 474

Całka rekurencyjna, transformata Laplace'a

Witam
Mam do policzenia całeczke (transformata Laplace'a z definicji dla t^{n} ):
\mathcal{I} = \int_{0}^{ \infty } e^{-s t} * t ^{n} dt
Całka nieoznaczona jest rekurencyjna, jak wyprowadzić wzór w postaci ogólnej ?
\mathcal{I}(n) = \frac{-e ^{-s t} * t ^{n} + n * \mathcal{I}(n-1) }{s}
Proszę o ...
autor: djlinux
7 lis 2012, o 23:43
Forum: Rachunek całkowy
Temat: Udowodnij ortogonalność
Odpowiedzi: 1
Odsłony: 432

Udowodnij ortogonalność

Udowodnij, że \cos n \omega t i \sin m \omega t , gdzie n, m > 0 są ortogonalne na odcinku \left[ t_0\right, t_0+T] gdzie T = \frac {2 \pi}{\omega}

Policzyłem całkę : \int_{t_0}^{t_0+\frac{2 \pi}{\omega} } (\cos n \omega t )(\sin m \omega t) dt
Wynik całki nieoznaczonej sprawdziłem z Wolframem ...
autor: djlinux
23 paź 2012, o 15:44
Forum: Kombinatoryka i matematyka dyskretna
Temat: Układ równań rekurencyjnych
Odpowiedzi: 2
Odsłony: 848

Układ równań rekurencyjnych

Dokładnie tak - tym bardziej, że prowadzący pod oznaczeniem \(\displaystyle{ \lg}\) rozumie logarytm binarny, a nie dziesiętny.
Temat uważam za zamknięty.
autor: djlinux
20 paź 2012, o 14:03
Forum: Kombinatoryka i matematyka dyskretna
Temat: Układ równań rekurencyjnych
Odpowiedzi: 2
Odsłony: 848

Układ równań rekurencyjnych

Rozwiąż układ równań rekurencyjnych (zakładając, że N jest potęgą dwójki)
T(1) = 1
T(N) = c (\lg N) + T(N/2) dla N \ge 2


Próbowałem w taki sposób :
T(N) = c(\lg N) + c(\lg \frac{N}{2}) + c(\lg \frac{N}{4}) + ... + c (\lg 2) + 1
T(N) = c (\lg (N * \frac{N}{2} * \frac{N}{4} * ... * 2) )+ 1 ...
autor: djlinux
28 lut 2012, o 19:41
Forum: Logika
Temat: Zamiana sumy na iloczyn.
Odpowiedzi: 1
Odsłony: 955

Zamiana sumy na iloczyn.

Prawa De Morgana, ew. tablica Karnaugha. Zapisujesz w kanonicznej postaci dysjunkcyjnej. A potem układ AND-OR zamieniasz na NANDy jak w tym linku: punkt Q21
Wykład dr. inż Kwiatkowskiego również poruszał tą tematykę
autor: djlinux
24 lut 2012, o 23:03
Forum: Funkcje trygonometryczne i cyklometryczne
Temat: Wyznacz najmniejszą i największą wartość funkcji
Odpowiedzi: 2
Odsłony: 439

Wyznacz najmniejszą i największą wartość funkcji

\cos^{2} \in \left\langle 0;1 \right\rangle
Skoro tak to :
t = 3 \cos^{2}+1 \in \left\langle 1;4\right\rangle

Jak robisz takie podstawienie to masz:
f(t) = 2t^2 - 12t + 16
Parabola do góry, wartość najmniejsza w punkcie t = 3 (sprawdzamy czy pasuje do założenia!)
Wartość największa, im dalej ...
autor: djlinux
24 lut 2012, o 22:48
Forum: Geometria analityczna
Temat: dla jakich m okręgi są zewnętrznie styczne
Odpowiedzi: 1
Odsłony: 911

dla jakich m okręgi są zewnętrznie styczne

To po prostu odległość między dwoma punktami(Pitagoras!) \(\displaystyle{ S1}\) i \(\displaystyle{ S2}\)
Najprościej chyba:
\(\displaystyle{ \sqrt{ (1-1)^2 + (m+m)^2} = r_{1} + r_{2}}\)
\(\displaystyle{ |2m| = 1 + |m-2|}\)
I na przedziałach policzyć ?

Dorzuć założenie, że \(\displaystyle{ r_{2} = |m-2| \neq 0}\) Aby to był rzeczywiście okrąg, a nie punkt.
autor: djlinux
24 lut 2012, o 22:42
Forum: Funkcje trygonometryczne i cyklometryczne
Temat: Równanie- na wzorach wychodzi, z wykresu nie...
Odpowiedzi: 2
Odsłony: 438

Równanie- na wzorach wychodzi, z wykresu nie...

Może pomoże: \(\displaystyle{ cos(2x+ \frac{ \pi }{3})= cos(2(x+ \frac{ \pi }{6}))=1}\)

Przesuwasz o to co stoi przy zmiennej x czyli \(\displaystyle{ [-\frac{\pi}{6}, 0 ]}\)
autor: djlinux
21 lut 2012, o 22:46
Forum: Funkcje kwadratowe
Temat: funkcje kwadratowe
Odpowiedzi: 2
Odsłony: 1529

funkcje kwadratowe

Ad 1)
Parabola skierowana w dół więc wartość największa w punkcie W(p,q)
Ogólnie p = -\frac{b}{2a}
Tutaj p = -\frac{b}{-4}
Z zadania p = \frac{1}{4}
Więc b = 1
Potem już tylko podstawić do funkcji f wskazany argument.

Ad 2)
Liczymy miejsce zerowe funkcji f(x) =0 \Leftrightarrow x = -5
Z ...
autor: djlinux
20 lut 2012, o 16:51
Forum: Liczby zespolone
Temat: Rozwiązać równie w dziedzinie liczb zespolonych
Odpowiedzi: 4
Odsłony: 537

Rozwiązać równie w dziedzinie liczb zespolonych

Jeden pierwiastek zespolony równania już masz : \(\displaystyle{ 9-2i}\)
Skorzystaj później z interpretacji trygonometrycznej i zastosuj odpowiedni wzór na znalezienie pozostałych.
Pierwiastek liczby zespolonej