Transformata Laplace'a delty Diraca

Całkowalność. Metody i obliczanie całek oznaczonych i nieoznaczonych. Pole pod wykresem. Równania i nierówności z wykorzystaniem rachunku całkowego. Wielowymiarowa całka Riemanna - w tym pola i objętości figur przestrzennych.
djlinux
Użytkownik
Użytkownik
Posty: 115
Rejestracja: 9 gru 2007, o 10:07
Płeć: Mężczyzna
Lokalizacja: Zamość
Podziękował: 39 razy
Pomógł: 7 razy

Transformata Laplace'a delty Diraca

Post autor: djlinux »

Jak rozpisać coś takiego? Zależy mi na pokazaniu z definicji.
\(\displaystyle{ \int_{0}^{ \infty } \delta(t) * e ^ {- s t} dt}\)
miodzio1988

Transformata Laplace'a delty Diraca

Post autor: miodzio1988 »

Delta DIraca jak jest zdefiniowana?
djlinux
Użytkownik
Użytkownik
Posty: 115
Rejestracja: 9 gru 2007, o 10:07
Płeć: Mężczyzna
Lokalizacja: Zamość
Podziękował: 39 razy
Pomógł: 7 razy

Transformata Laplace'a delty Diraca

Post autor: djlinux »

\(\displaystyle{ \int_{- \infty }^{ \infty } \delta(t) dt = 1}\)
\(\displaystyle{ \delta(t) = \begin{cases} +\infty, t=0 \\ 0 , t \neq 0 \end{cases}}\)

A tutaj (w transformacie Laplace'a) są granice całkowania od 0 do nieskończoności.
ODPOWIEDZ