Znaleziono 205 wyników

autor: Efendi
7 wrz 2010, o 13:12
Forum: Teoria liczb
Temat: Własność kongruencji
Odpowiedzi: 1
Odsłony: 345

Własność kongruencji

\(\displaystyle{ a \equiv b \ (mod \ k) \ \wedge \ ac \equiv x \ (mod \ k) \ \Rightarrow \ bc \equiv x \ (mod \ k)}\)

Czy można przeprowadzić powyższe rozumowanie? A jeśli nie, to dlaczego?
autor: Efendi
29 maja 2010, o 18:22
Forum: Własności i granice ciągów
Temat: Obliczyć sumę szeregu
Odpowiedzi: 3
Odsłony: 277

Obliczyć sumę szeregu

Należy obliczyć sumę szeregu \(\displaystyle{ \sum_{n=0}^{\infty} \frac{k^{n}}{n!}x^{n}}\) gdzie \(\displaystyle{ k>1}\).
autor: Efendi
17 kwie 2010, o 19:42
Forum: Kombinatoryka i matematyka dyskretna
Temat: Liczba drzew o określonym stopniu wierzchołków
Odpowiedzi: 0
Odsłony: 456

Liczba drzew o określonym stopniu wierzchołków

Typ zadania jest następujący: Ile jest drzew na zbiorze wierzchołków {1...n} takich, że stopień wierzchołka 2 wynosi 3, a stopień wierzchołka 3 wynosi 4? Nie wiem czy dobrze myślę, ale zrobiłbym to tak: Rozpatrujemy kod Prufera. Na 3-1=2 miejscach wstawiamy 2. Na innych 4-1=3 miejscach wstawiamy 3. ...
autor: Efendi
1 lut 2010, o 17:43
Forum: Algebra abstrakcyjna
Temat: sprawdź czy jest ciałem małe pytanie
Odpowiedzi: 2
Odsłony: 1060

sprawdź czy jest ciałem małe pytanie

Podstaw sobie np. x~y=a. Wtedy dostaniesz (x~y)~z=a~z=a+z-1 i teraz pod a podstaw na nowo a=x~y=x+y-1.
Może w ten sposób łatwiej zrozumiesz jak do działa .
autor: Efendi
1 lut 2010, o 17:39
Forum: Rachunek całkowy
Temat: całka nioznaczona funkcji wymiernej
Odpowiedzi: 1
Odsłony: 105

całka nioznaczona funkcji wymiernej

\(\displaystyle{ \int_{}^{} \frac{dx}{ (x ^{2} +2x+5)^{2} }=\int_{}^{} \frac{dx}{ ((x+1) ^{2} +4)^{2} }=
\int_{}^{} \frac{dx}{ 2((\frac{x+1}{2}) ^{2} +1)^{2} }}\)

Teraz podstawienie \(\displaystyle{ t=\frac{x+1}{2}}\), a następnie wykorzystanie wzoru rekurencyjnego na wyrażenia postaci \(\displaystyle{ \int \frac{dx}{(1+x^{2})^{n}}}\).
autor: Efendi
1 lut 2010, o 12:03
Forum: Rachunek całkowy
Temat: Całki nieoznaczone
Odpowiedzi: 1
Odsłony: 278

Całki nieoznaczone

Obliczyć całki nieoznaczone:
\(\displaystyle{ \int\frac{dx}{x\sqrt{1+x^{3}+x^{6}}}}\)
\(\displaystyle{ \int\frac{dx}{x\sqrt{3x^{4}-2x^{2}-1}}}\)
autor: Efendi
28 sty 2010, o 15:57
Forum: Rachunek różniczkowy
Temat: Wyznaczyć wartość najmniejszą i największą
Odpowiedzi: 1
Odsłony: 188

Wyznaczyć wartość najmniejszą i największą

Wyznaczyć wartość najmniejszą i największą funkcji f na zbiorze A, jeżeli
\(\displaystyle{ f(x,y)=2x^{3}+4x^{2}+y^{2}-2xy}\) oraz \(\displaystyle{ A=\{(x,y):x^{2} \leq y \leq 4\}}\)

Policzyłem już co trzeba wewnątrz zbioru, ale nie wiem za bardzo jak to zrobić na brzegu.
autor: Efendi
27 sty 2010, o 20:15
Forum: Granica i ciągłość funkcji
Temat: Granica iterowana
Odpowiedzi: 1
Odsłony: 258

Granica iterowana

Obliczyć granice iterowane \lim_{x\to x_{0}}[\lim_{y\to y_{0}}f(x,y)] i \lim_{y\to y_{0}}[\lim_{x\to x_{0}}f(x,y)] . Przy czym: (x_{0},y_{0})=(0,2) f(x,y)=\frac{2|x|+3|y-2|}{|x|+|y-2|} . Problem mam z tym, że wychodzą mi dwie różne, więc pewnie coś robię źle. Prosiłbym o w miarę dokładne rozpisanie ...
autor: Efendi
20 gru 2009, o 17:19
Forum: Geometria analityczna
Temat: Punkt symetryczny względem płaszczyzny
Odpowiedzi: 1
Odsłony: 947

Punkt symetryczny względem płaszczyzny

Znaleźć punkt symetryczny do punktu P(1,1,0) względem płaszczyzny o równaniu x+2y-z=0.
autor: Efendi
20 gru 2009, o 15:48
Forum: Algebra liniowa
Temat: Rozwiązać układ równań
Odpowiedzi: 1
Odsłony: 260

Rozwiązać układ równań

Rozwiązać układ równań w zależności od parametru a.

\(\displaystyle{ \begin{cases} ax_{1}+x_{2}+x_{3}+...+x_{n}=1\\x_{1}+ax_{2} +x_{3}+...+x_{n}=1\\.\\.\\.\\x_{1}+x_{2}+x_{3}+...+ax_{n}=1 \end{cases}}\)
autor: Efendi
1 lis 2009, o 12:38
Forum: Algebra liniowa
Temat: Baza i przekształcenie liniowe
Odpowiedzi: 1
Odsłony: 502

Baza i przekształcenie liniowe

1. Znaleźć bazę przestrzeni liniowej V=\{(x-y, 3y, 2y-x, 2x) : x,y \in R \} . Znaleźć bazę tej przestrzeni, w której wszystkie współrzędne wektora (1,3,0,4) są równe 4. 2. Sprawdzić, czy podane przekształcenie jest przekształceniem liniowym: \varphi : C[x] \to C, f \mapsto f(j) gdzie C[x] to zbiór w...
autor: Efendi
25 paź 2009, o 18:41
Forum: Granica i ciągłość funkcji
Temat: Wykazać z definicji Cauchy'go
Odpowiedzi: 1
Odsłony: 395

Wykazać z definicji Cauchy'go

Prawdziwa jest następująca nierówność: \forall \alpha \in (-\frac{\pi}{2},\frac{\pi}{2})- \{0\} \ 1-|\alpha| < \frac{sin \alpha}{\alpha} < 1+|\alpha| Stąd: -|\alpha|<\frac{sin \alpha}{\alpha} - 1 < |\alpha| => |\frac{sin \alpha}{\alpha} - 1|<|\alpha| Zatem jeżeli tylko \alpha < \epsilon to możemy za...
autor: Efendi
25 paź 2009, o 18:25
Forum: Granica i ciągłość funkcji
Temat: Na postawie definicji granicy pokaż, że
Odpowiedzi: 1
Odsłony: 315

Na postawie definicji granicy pokaż, że

1. \(\displaystyle{ \forall \epsilon > 0 \ \exists \delta = \frac{3 - 5 \epsilon}{\epsilon} \in R \ \forall n> \delta \ |x_{n}-0|<\epsilon}\)
gdzie \(\displaystyle{ x_{n}=\frac{3}{n+5}}\)
autor: Efendi
13 paź 2009, o 22:14
Forum: Granica i ciągłość funkcji
Temat: Wyznaczenie granic z definicji
Odpowiedzi: 0
Odsłony: 270

Wyznaczenie granic z definicji

1. Wyznaczyć granice (korzystając z definicji i podstawowych operacji na granicach):
a) \(\displaystyle{ \lim_{x\to 0} \frac{arcsinx}{x}}\)

b) \(\displaystyle{ \lim_{x\to 0} \frac{\sqrt[4]{1+xsinx}-1}{2^{x^{2}}-1}}\)

2. Wyznaczyć dziedzinę i okres podstawowy (jeśli istnieje) funkcji f(x)=|tgx+ctgx|.
autor: Efendi
9 paź 2009, o 20:04
Forum: Zbiory. Teoria mnogości
Temat: Teoria mnogości - zadania
Odpowiedzi: 2
Odsłony: 1529

Teoria mnogości - zadania

1.Różnicą symetryczną dwóch zbiorów A i B nazywamy zbiór A \div B = (A\backslash B) \cup (B\backslash A) . Udowodnić, że dla dowolnych zbiorów A,B,C zachodzą równości: a) A \div (B \div C) = (A \div B ) \div C b) A \cap (B \div C) = (A \cap B) \div (A \cap C) 2. Niech A=\lbrace\o, \lbrace\o\rbrace \...