Znaleziono 4139 wyników

autor: Spektralny
24 wrz 2019, o 21:23
Forum: Algebra abstrakcyjna
Temat: izomorfizm algebr
Odpowiedzi: 2
Odsłony: 980

Re: izomorfizm algebr

Rozumiem, że traktujesz grupy abelowe jako \mathbb Z -algebry. Można i tak. Grupa \mathbb Z jest cykliczna, ale \mathbb Z^2 . Istotnie, załóżmy, że (m,n) generuje tę grupę.Wtedy każda inna para jest wielokrotnością postaci (km, kn) , ale tak być nie może. Jasne jest, że m\neq 0 \neq n . Ponadto, par...
autor: Spektralny
23 wrz 2019, o 23:11
Forum: Algebra abstrakcyjna
Temat: Pierscienie
Odpowiedzi: 3
Odsłony: 1206

Re: Pierscienie

Oznaczmy przez \(\displaystyle{ [x]}\) część całkowitą z liczby \(\displaystyle{ x}\). Zauważmy, że \(\displaystyle{ 5 = [5.69] = [2.3 \cdot 2.3] \neq [2.3] \cdot [2,3] = 2\cdot 2 = 4}\), a więc odwzrowoanie to nie jest homomorfizmem pierścieni bo nie jest multyplikatywne.
autor: Spektralny
23 wrz 2019, o 23:06
Forum: Algebra abstrakcyjna
Temat: co to jest algebra zdarzen
Odpowiedzi: 1
Odsłony: 1753

Re: co to jest algebra zdarzen

Przez algebrę zdarzeń zwykle rozumie się σ-algebrę pojawiającą się w definicji przestrzeni probabilistycznej.
autor: Spektralny
23 wrz 2019, o 12:11
Forum: Analiza wyższa i funkcjonalna
Temat: Rodzina funkcji.
Odpowiedzi: 1
Odsłony: 1188

Re: Rodzina funkcji.

Spróbujmy zastosować tutaj twierdzenie Stone'a-Weiestrassa, które mówi że każdy podpierścień z jedynką algebry C(X) funkcji ciągłych na przestrzeni zwartej X , który rozdziela punkty jest gęsty jednostajnie. Rozważamy tutaj pierścień z jedynką generowany przez funkcję kwadratową (oraz X=[0, 1/2] ). ...
autor: Spektralny
19 maja 2019, o 18:05
Forum: Algebra liniowa
Temat: twierdzenie odwzorowania izometryczne
Odpowiedzi: 5
Odsłony: 372

Re: twierdzenie odwzorowania izometryczne

Niech S będzie rzeczoną izometrią oraz niech Tx = Sx - S0 . Wówczas T jest izometrią bo \|Tx - Ty\| = \|Sx - S0 - Sy + S0\| = \|Sx-Sy\| = \|x-y\| oraz, oczywiście, T0=0 . Wykaż, że T zachowuje iloczyn skalarny: \begin{array}{lcl}\langle Tx, Ty\rangle &=& \tfrac{1}{2}(\|Tx\|^2 + \|Ty\|^2 - \|Tx-Ty\|^...
autor: Spektralny
19 maja 2019, o 17:45
Forum: Analiza wyższa i funkcjonalna
Temat: Przekształcenia afiniczne i izometryczne.
Odpowiedzi: 1
Odsłony: 308

Re: Przekształcenia afiniczne i izometryczne.

Ścisła wypukłość przestrzeni unormowanej oznacza tyle, że jej sfera nie zawiera nietrywialnego odcinka. Tutaj znajdziesz listę równoważnych warunków. Twoje zadanie to wynik Bakera z 1971: J. Baker, Isometries in normed spaces , American Math. Monthly 78 (1971), 655-658. Szkic dowodu. Niech H_1(x,y) ...
autor: Spektralny
19 maja 2019, o 17:18
Forum: Analiza wyższa i funkcjonalna
Temat: Twierdzenie o odwzorowaniach izometrycznych
Odpowiedzi: 1
Odsłony: 217

Twierdzenie o odwzorowaniach izometrycznych

Możesz wykazać, że jeżeli T\colon X\to X jest ciągłą bijekcją na przestrzeni unormowanej X o tej własności, że \|Tx + Ty\| = \|x+y\| dla wszelkich x,y\in X , to T jest odwzorowaniem liniowym. Polecam też Twojej uwadze wzmocnienie twierdzenie Mazura-Ulama udowodnione przez Figla: T. Figiel, On nonlin...
autor: Spektralny
4 lut 2019, o 19:25
Forum: Analiza wyższa i funkcjonalna
Temat: Ścisła wypukłość zbioru
Odpowiedzi: 6
Odsłony: 408

Ścisła wypukłość zbioru

Zauważmy, że ścisła wypukłość przestrzeni sprowadza się do następującego warunku: brzeg kuli (tj. sfera) nie zawiera żadnego niezdegenrowanego odcinka. Rzeczywiście, mówi się czasami o ściśle wypukłych ciałach wypukłych (czy ogólniej zbiorach), tj. zbiorach wypuklych mających powyższą własność. Taką...
autor: Spektralny
25 wrz 2018, o 19:18
Forum: Dyskusje o matematyce
Temat: Atiyah Hipoteza R
Odpowiedzi: 7
Odsłony: 2329

Re: Atiyah Hipoteza R

Atiyah jest jednym z moich ulubionych matematyków współczesnych; wolałbym by pamiętano go ze względu na jego twierdzenie z Singerem o operatorach Diraca czy K-teorii niż z tego występu... Sam spotkałem go dwa razy w Heidelbergu (2013, 2014) i o ile towarzysko wypadał znakomicie (tj. brak oznak demen...
autor: Spektralny
27 sie 2018, o 18:44
Forum: Programy matematyczne
Temat: Język programowania dla matematyka
Odpowiedzi: 5
Odsłony: 1374

Re: Język programowania dla matematyka

Wszystko zależy co rozumiesz przez to kim jest matematyk - jeżeli masz na myśli człowieka, który pracuje naukowo w tzw. matematyce czystej to dowolny język oprogramowania wystarczy by okazjonalnie przeprowadzić jakieś symulacje (dlatego Python wydaje się dobrym wyborem ze względu na bogactwo bibliot...
autor: Spektralny
20 sie 2018, o 17:57
Forum: Analiza wyższa i funkcjonalna
Temat: zbieżność w normie słaba zbieżność ciągu w przestrzeni c0
Odpowiedzi: 1
Odsłony: 251

Re: zbieżność w normie słaba zbieżność ciągu w przestrzeni c

Ciąg ten nie jest zbieżny w normie bo \|e_j - e_k\|=1 dla j\leq k . Ciąg ten jest jednak zbieżny słabo do 0. Rzeczywiście, dla (\xi_j)_{j=1}^\infty\in \ell_1 \cong c_0^* mamy \langle e_k, (\xi_j)_{j=1}^\infty\rangle = \xi_k \to 0 gdy k\to\infty ponieważ ciągi sumowalne są zbieżne do zera, co dowodzi...
autor: Spektralny
19 lip 2018, o 22:44
Forum: Analiza wyższa i funkcjonalna
Temat: podzbiór zwarty nieskończenie wymiarowej przestrzeni
Odpowiedzi: 5
Odsłony: 536

Re: podzbiór zwarty nieskończenie wymiarowej przestrzeni

Zastosuj po prostu lemat Riesza by uzasadnić, że kula w przestrzeni nieskończenie wymiarowej nie jest zwarta.
autor: Spektralny
19 lip 2018, o 17:59
Forum: Analiza wyższa i funkcjonalna
Temat: Funkcje pierwszej klasy Baire'a
Odpowiedzi: 3
Odsłony: 719

Re: Funkcje pierwszej klasy Baire'a

[quote="mundson"]A znacie jakiś przystępny przykład na to, że złożenie funkcji pierwszej klasy Baire'a z funkcją ciągłą nie musi być pierwszej klasy Baire'a?[/quote]

A dlaczego wnosisz, że tak ma być?
autor: Spektralny
29 cze 2018, o 12:38
Forum: Analiza wyższa i funkcjonalna
Temat: Wymiar przestrzeni Banacha
Odpowiedzi: 2
Odsłony: 309

Re: Wymiar przestrzeni Banacha

Nie potrzeba nawet twierdzenia Baire'a by pokazać coś mocniejszego. Baza Hamela nieskończenie wymiarowej przestrzeni Banacha ma moc co najmniej continuum.
  • H. Elton Lacey, The Hamel Dimension of any Infinite Dimensional Separable Banach Space is c, Amer. Math. Mon. 80 (1973), 298.
autor: Spektralny
29 cze 2018, o 12:36
Forum: Analiza wyższa i funkcjonalna
Temat: Norma funkcjonału liniowego
Odpowiedzi: 1
Odsłony: 242

Re: Norma funkcjonału liniowego

Zauważ, że \|f\|\leqslant 1 bo gdy wszystkie wyrazy (x_n) są na moduł nie większe niż 1, to |f(x_n)_{n=1}^\infty| \leqslant \sum_{k=1}^\infty \frac{1}{2^k} = 1. Jest to istotnie norma f ponieważ jeżeli g_n oznacza ciąg jedynek na pierwszych n miejscach po których następują same zera to \|g_n\| = 1 o...