Znaleziono 17 wyników

autor: zedd5
6 wrz 2011, o 17:16
Forum: Informatyka
Temat: [C] Problem z programem w c
Odpowiedzi: 9
Odsłony: 1173

[C] Problem z programem w c

Nie wiem, czy dobrze, ale się kompiluje.
Nie używaj zmiennych (n) do określania rozmiarów tablic. Przydziel pamięć dynamicznie (malloc, free).
Na początek polecam bardziej DevCpp niż CodeBlocks.


#include <stdio.h>
#include <stdlib.h>

float wydatki(int dzieci, int lata, float dochod){
return (-0 ...
autor: zedd5
31 sie 2011, o 22:01
Forum: Prawdopodobieństwo
Temat: Jakie jest prawdopodobieństwo?
Odpowiedzi: 15
Odsłony: 1571

Jakie jest prawdopodobieństwo?

a)
Gdyby nie było tego wiadomo, to prawdopodobieństwo by według mnie wynosiłoby 0,5 (samiec/samica) * 0,5 (samiec/samica) = 0,25, czyli 1/4. Ale jest ta dodatkowa informacja - pewnik, że jedna jest samcem (przynajmniej jedna), to z rachunków by mi wyszło 1 (na pewno samiec) * 0,5 (samiec/samica) = 0 ...
autor: zedd5
31 sie 2011, o 15:23
Forum: Prawdopodobieństwo
Temat: Jakie jest prawdopodobieństwo?
Odpowiedzi: 15
Odsłony: 1571

Jakie jest prawdopodobieństwo?

Chwila, moment.
Dlaczego wychodzą tak dziwne wyniki z tymi myszami?

a) Wiadomo, że jedna mysz jest samcem, a druga nie wiadomo. Czy druga jest, czy nie jest to jest pół na pól, czyli 0,5.

b) Podobnie - biała jest samcem i to zależy tylko od tej drugiej czy obie są samcami, czy nie.

Gdzie robię ...
autor: zedd5
29 lip 2008, o 22:39
Forum: Kombinatoryka i matematyka dyskretna
Temat: Liczba słów określonej długości - rekurencja
Odpowiedzi: 3
Odsłony: 2327

Liczba słów określonej długości - rekurencja

Qń, dzięki za odpowiedź. Byłem na wakacjach i nie mogłem odpisać.

Mógłbyś jednak bardziej uzasadnić swoje stanowisko?

Bo ja biorę dokładnie 2/3, ale jak ze wzoru wynika z s_{n-1} słów, a nie z całości, czyli z s_{n} słów.
A te 2/3 wziąłem, żeby nie dobierać "złych" słów. Gdyby moje rozwiązanie ...
autor: zedd5
21 lip 2008, o 23:59
Forum: Kombinatoryka i matematyka dyskretna
Temat: Liczba słów określonej długości - rekurencja
Odpowiedzi: 3
Odsłony: 2327

Liczba słów określonej długości - rekurencja

Mam pytanie do poniższego zadania, podpunkt (b)

Zad. (Matematyka Dyskretna, Ross, paragraf 4.3., zad. 7.)
Niech:
\Sigma= \{a, b, c\} (sigma oznacza alfabet)
i niech s_{n} oznacza liczbę słów o długości n, które nie mają kolejnych liter a.
(a) Oblicz s_{0},s_{1},s_{2} .
(b) Znajdź wzór ...
autor: zedd5
17 lip 2008, o 16:10
Forum: Chemia
Temat: Szalki wagi z NaOH i NaCl
Odpowiedzi: 1
Odsłony: 6645

Szalki wagi z NaOH i NaCl

1) Obniży się zlewka z NaOH, bo pochłonie CO2 z powietrza
2) W 100 g rudy masz 9 g wody i 18.2 g Cu. Masa suchej rudy to 91 g. Stąd %Cu w suchej rudzie wynosi:
%Cu = 18.2g / 91 g * 100% = 20%
3) N_{2}+3H_{2}\rightarrow 2NH_{3}
Na początku było 100 jo (jednostek objętościowych) mieszaniny wodoru i ...
autor: zedd5
29 kwie 2008, o 21:10
Forum: Algebra liniowa
Temat: Lemat do dowodu łączności iloczynu trzech macierzy
Odpowiedzi: 2
Odsłony: 557

Lemat do dowodu łączności iloczynu trzech macierzy

Nie rozumiem. Prosiłbym o opis. To jest kontrprzykład?
Chodzi mi tylko o wykazanie lub nie równości. a, b, c, z odpowiednimi indeksami to dowolne liczby rzeczywiste.
autor: zedd5
27 kwie 2008, o 21:12
Forum: Algebra liniowa
Temat: Lemat do dowodu łączności iloczynu trzech macierzy
Odpowiedzi: 2
Odsłony: 557

Lemat do dowodu łączności iloczynu trzech macierzy

Witam!
Potrzebuję dowodu tej tezy lub kontrprzykładu:
\(\displaystyle{ \sum_{j}^{} \sum_{l}^{} a_{ij}b_{jl}c_{lk}= \sum_{l}^{} \sum_{j}^{}a_{ij}b_{jl}c_{lk}}\)
autor: zedd5
9 kwie 2008, o 09:36
Forum: Kombinatoryka i matematyka dyskretna
Temat: relacje
Odpowiedzi: 0
Odsłony: 412

relacje

Czy jeśli relacje \(\displaystyle{ R_{1}}\) i \(\displaystyle{ R_{2}}\) są zwrotne, to relacja \(\displaystyle{ R_{1}\cup R_{2}}\) musi być zwrotna?
autor: zedd5
5 kwie 2008, o 01:45
Forum: Logika
Temat: Analiza rozumowań 2
Odpowiedzi: 2
Odsłony: 825

Analiza rozumowań 2

Ok. Thx.
autor: zedd5
4 kwie 2008, o 13:17
Forum: Rachunek różniczkowy
Temat: monotoniczność + ekstrema
Odpowiedzi: 2
Odsłony: 558

monotoniczność + ekstrema

1)
Źle policzyłeś pochodną.
f(x)=x\cdot e^{-x}\qquad Dom=R
f'(x)=e^{-x}-x\cdot e^{-x}\qquad Dom=R
Żeby policzyć ekstremum, przyrównaj do zera pochodną:
0=e^{-x}-x\cdot e^{-x}
0=e^{-x}(1-x)
stąd masz ekstremum lub punkt przegięcia w punkcie przy x = 1.
Funkcja e^{-x} jest zawsze dodatnia ...
autor: zedd5
4 kwie 2008, o 12:14
Forum: Własności i granice ciągów
Temat: Przybliżanie liczby e
Odpowiedzi: 2
Odsłony: 1851

Przybliżanie liczby e

Jeżeli dysponujesz wystarczająco dobrym typem rzeczywistym, to możesz zastosować wzór:
e= \sum_{n=0}^{z}\frac{1}{n!}
Rozwiązujesz to w pętli licząc kolejne ułamki i dodając. Liczbę 'z' możesz policzyć ze wzoru Stirlinga lub pisząc program.
Listing w C++:
#include

long double Silnia(int n);

int ...
autor: zedd5
2 kwie 2008, o 14:41
Forum: Logika
Temat: Analiza rozumowań 2
Odpowiedzi: 2
Odsłony: 825

Analiza rozumowań 2

Czy ten dowód jest poprawny?
Założenia:
(o\wedge r)\rightarrow z\\ z\rightarrow p
Teza:
(\neg z\wedge\neg p)\rightarrow\neg o
Dowód:
przekształcenie założenia
(\neg z\rightarrow p)\leftrightarrow (z\vee p)\rightarrow (z\vee p\vee\neg o)
przekształcenie tezy
[(\neg z\wedge\neg p)\rightarrow ...
autor: zedd5
2 kwie 2008, o 03:08
Forum: Kombinatoryka i matematyka dyskretna
Temat: Analiza rozumowań
Odpowiedzi: 0
Odsłony: 337

Analiza rozumowań

Mając następujące założenia:
A\rightarrow B, (B\vee Y)\rightarrow (L\wedge N), (B\wedge N)\rightarrow A,\\ (B\vee\neg Y)\rightarrow A, (B\vee Y)\rightarrow N, (B\wedge\neg N)\rightarrow A
udowodnij lub wykaż, że nie są wnioskami:
A\leftrightarrow B, B\rightarrow\neg N, (Y\leftrightarrow A), L ...
autor: zedd5
12 mar 2008, o 20:40
Forum: Inne funkcje + ogólne własności
Temat: obraz i przeciwobraz
Odpowiedzi: 4
Odsłony: 603

obraz i przeciwobraz

Dzięki mimo wszystko.