Strona 1 z 1

[Nierówności] Nierówność dla dodatnich

: 27 sie 2011, o 17:55
autor: justynian
siemka, nie za bardzo nawet na pałe wychodzi:

\(\displaystyle{ 2 \left( \frac {a^3}{b + c} +\frac {b^3}{c + a} +\frac {c^3}{a + b} \right) + \left( a + b + c \right) ^2 >4 \left( a^2 + b^2 + c^2 \right)}\)

[Nierówności] Nierówność dla dodatnich

: 27 sie 2011, o 19:09
autor: MateuszL
Było kiedyś na forum.
hint
Ukryta treść:    

[Nierówności] Nierówność dla dodatnich

: 27 sie 2011, o 19:11
autor: kaszubki
justynian pisze:siemka, nie za bardzo nawet na pałe wychodzi
No to chyba kiepsko sprawdzałeś. Po wymnożeniu stronami przez \(\displaystyle{ (a+b)(a+c)(b+c)}\) dostajemy równoważną nierówność \(\displaystyle{ \sum 3a(a^4 + c^2 b^2) \geq \sum (a+b+c)(a^4 + c^2 b^2)}\), a to są po prostu ciągi jednomonotoniczne.

[Nierówności] Nierówność dla dodatnich

: 27 sie 2011, o 20:11
autor: justynian
kaszubki pisze:
justynian pisze:siemka, nie za bardzo nawet na pałe wychodzi
No to chyba kiepsko sprawdzałeś. Po wymnożeniu stronami przez \(\displaystyle{ (a+b)(a+c)(b+c)}\) dostajemy równoważną nierówność \(\displaystyle{ \sum 3a(a^4 + c^2 b^2) \geq \sum (a+b+c)(a^4 + c^2 b^2)}\), a to są po prostu ciągi jednomonotoniczne.
racja ale to dopiero po otwarciu wszystkiego ...
MateuszL pisze:Było kiedyś na forum.
hint
Ukryta treść:    
masz linka czy z pamięci bo nie widzę co to da ?

[Nierówności] Nierówność dla dodatnich

: 27 sie 2011, o 21:00
autor: timon92
przez \(\displaystyle{ \sum}\) oznaczam sumę cykliczną

mnożymy obustronnie przez \(\displaystyle{ \sum ab}\) i zapisujemy tak:

\(\displaystyle{ \left( \sum \frac{a^3}{b+c} \right)\left(\sum a(b+c) \right) + \left( \sum a \right) ^2 \left( \sum ab \right) - 4 \cdot \left( \sum a^2 \right) \left( \sum ab \right) \ge 0}\)

ze schwarza pierwszy iloczyn szacujemy przez \(\displaystyle{ \left( \sum a^2 \right)^2}\), wystarczy więc pokazać, że \(\displaystyle{ \left( \sum a^2 \right)^2 + \left( \sum a \right) ^2 \left( \sum ab \right) - 4 \cdot \left( \sum a^2 \right) \left( \sum ab \right) \ge 0}\), a to się zwija do \(\displaystyle{ \left( \sum a^2 - \sum ab \right) \left( \sum a^2 + 3 \sum ab \right) \ge 0}\)

[Nierówności] Nierówność dla dodatnich

: 27 sie 2011, o 23:51
autor: MateuszL
justynian pisze:
MateuszL pisze:Było kiedyś na forum.
hint
Ukryta treść:    
masz linka czy z pamięci bo nie widzę co to da ?
Nie mam linka, nie jestem w stanie określić w jakim temacie i ile dokładnie czasu temu tu to było, w każdy razie na wiosnę. Dokładniejszy hint (właściwie szkic rozwiązania):
Ukryta treść: