Można trochę prościej [niż to, co ja tutaj napiszę], działa np. lemat że jeśli rozmawiają jakiekolwiek 2 osoby które mają jakąkolwiek wspólną informację, to można zmniejszyć liczbę osób o 1 i liczbę rozmów o 2, co rozwala zadanie prawie natychmiast i dowód jest nieco krótszy.
Czy istnieje funkcja dwóch zmiennych \(\displaystyle{ f:\mathbb{R}^{2} \rightarrow \mathbb{R}}\) t. że \(\displaystyle{ f(x,y)}\) jest wielomianem iksa po ustaleniu igreka oraz wielomianem igreka po ustaleniu iksa, ale \(\displaystyle{ f(x,y)}\) nie jest wielomianem dwóch zmiennych?
[Rozgrzewka OM][MIX] Łańcuszek olimpijski
Regulamin forum
Wszystkie tematy znajdujące się w tym dziale powinny być tagowane tj. posiadać przedrostek postaci [Nierówności], [Planimetria], itp.. Temat może posiadać wiele różnych tagów. Nazwa tematu nie może składać się z samych tagów.
Wszystkie tematy znajdujące się w tym dziale powinny być tagowane tj. posiadać przedrostek postaci [Nierówności], [Planimetria], itp.. Temat może posiadać wiele różnych tagów. Nazwa tematu nie może składać się z samych tagów.
- timon92
- Użytkownik

- Posty: 1676
- Rejestracja: 6 paź 2008, o 16:47
- Płeć: Mężczyzna
- Lokalizacja: Katowice
- Podziękował: 8 razy
- Pomógł: 485 razy
Re: [Rozgrzewka OM][MIX] Łańcuszek olimpijski
dlaczego?TheCB pisze:Wówczas istnieją takie funkcje \(\displaystyle{ f_{0}(y), f_{1}(y), ..., f_{n}(y)}\), że dla dowolnych \(\displaystyle{ x, y \in \mathbb{R}}\) mamy \(\displaystyle{ f(x,y)=\sum_{i=0}^{n} f_{i}(y)x^{i}}\).
-
TheCB
- Użytkownik

- Posty: 16
- Rejestracja: 11 paź 2015, o 18:07
- Płeć: Mężczyzna
- Lokalizacja: Krzyszkowo
- Pomógł: 2 razy
Re: [Rozgrzewka OM][MIX] Łańcuszek olimpijski
Czy to nie wynika bezpośrednio z faktu, że \(\displaystyle{ f(x,y)}\) jest wielomianem iksa po ustaleniu igreka? Wtedy dla danego \(\displaystyle{ y \in \mathbb R}\) funkcje te przyjmowałyby wartości będące współczynnikami takiego wielomianu, a \(\displaystyle{ n}\) byłoby największym możliwym stopniem takiego wielomianu.
- timon92
- Użytkownik

- Posty: 1676
- Rejestracja: 6 paź 2008, o 16:47
- Płeć: Mężczyzna
- Lokalizacja: Katowice
- Podziękował: 8 razy
- Pomógł: 485 razy
Re: [Rozgrzewka OM][MIX] Łańcuszek olimpijski
dla różnych igreków te wielomiany mogą mieć różne stopnie, w szczególności może być tak, że występują tam dowolnie duże stopnie, a w swoim rozwiązaniu zakładasz, że stopnie tych wielomianów są ograniczone przez \(\displaystyle{ n}\)
-
a4karo
- Użytkownik

- Posty: 22458
- Rejestracja: 15 maja 2011, o 20:55
- Płeć: Mężczyzna
- Lokalizacja: Bydgoszcz
- Podziękował: 43 razy
- Pomógł: 3852 razy
Re: [Rozgrzewka OM][MIX] Łańcuszek olimpijski
F. W. Carroll, "A polynomial in each variable separately is a polynomial." Amer. Math. Monthly 68 (1961) 42.
-- 18 lip 2017, o 19:40 --
Nie tak bardzo bzdury.
Rozwiązanie opiera się o obserwację, że dla pewnego \(\displaystyle{ n}\) zbiór ygrekow dla których stopień \(\displaystyle{ f(x, y)}\) nie przekracza \(\displaystyle{ n}\) jest nieskończony.
-- 18 lip 2017, o 19:40 --
Nie tak bardzo bzdury.
Rozwiązanie opiera się o obserwację, że dla pewnego \(\displaystyle{ n}\) zbiór ygrekow dla których stopień \(\displaystyle{ f(x, y)}\) nie przekracza \(\displaystyle{ n}\) jest nieskończony.
- mol_ksiazkowy
- Użytkownik

- Posty: 13372
- Rejestracja: 9 maja 2006, o 12:35
- Płeć: Mężczyzna
- Lokalizacja: Kraków
- Podziękował: 3425 razy
- Pomógł: 809 razy
Re: [Rozgrzewka OM][MIX] Łańcuszek olimpijski
Zadanie Udowodnić, ze \(\displaystyle{ \frac{n+1}{2} \le H_{2^n} \le n+1,}\) gdy \(\displaystyle{ H_n = 1+ \frac{1}{2} +...+ \frac{1}{n} .}\)
Ostatnio zmieniony 17 sie 2024, o 17:17 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Interpunkcja.
Powód: Interpunkcja.
