rozwiązać równanie

Definicja. Postać wykładnicza i trygonometryczna. Zagadnienia związane z ciałem liczb zespolonych.
morneo
Użytkownik
Użytkownik
Posty: 17
Rejestracja: 9 lut 2008, o 23:50
Płeć: Mężczyzna
Pomógł: 1 raz

rozwiązać równanie

Post autor: morneo » 6 sty 2009, o 00:18

\(\displaystyle{ (z+2)^{n}+(z-2)^{n}=0}\)

doszedłem do tego, że część rzeczywista liczby z jest równa 0, ale mam problem z urojona. Doszedłem do tego:


\(\displaystyle{ nx=ny+2k\pi}\)
\(\displaystyle{ \cos x=\frac{2}{\sqrt{4+b^{2}}}}\)
\(\displaystyle{ \cos y=\frac{-2}{\sqrt{4+b^{2}}}}\)

i ugrzęzłem, jak wyliczyć b?Da się czy nie tędy droga.

[ Dodano: 7 Stycznia 2009, 01:12 ]
nikt nic? próbowałem i na inne sposoby ale zawsze się zacinam

King James
Użytkownik
Użytkownik
Posty: 150
Rejestracja: 19 kwie 2007, o 22:52
Płeć: Mężczyzna
Lokalizacja: Biłgoraj/Kraków
Pomógł: 39 razy

rozwiązać równanie

Post autor: King James » 7 sty 2009, o 01:47

Wskazówka :
\(\displaystyle{ (z+2)^n+(z-2)^n=0 \iff ft(\frac{z+2}{z-2}\right)^n=-1}\)

Swoją drogą w poleceniu oryginalnego zadania nie było sumy potęg tylko różnica.

morneo
Użytkownik
Użytkownik
Posty: 17
Rejestracja: 9 lut 2008, o 23:50
Płeć: Mężczyzna
Pomógł: 1 raz

rozwiązać równanie

Post autor: morneo » 19 sty 2009, o 00:08

chyba tak, różnica była, poradziłem sobie z tym tego samego dnia co mi odpisałeś i w podobnej godzinie. Napisałem edita poszedłem pod prysznic i olśnienie 2 w nocy, zadanko done

ODPOWIEDZ