Stosując drugą pochodną, zbadać ekstrema funkcji.

Różniczkowalność, pochodna funkcji. Przebieg zmienności. Zadania optymalizacyjne. Równania i nierówności z wykorzystaniem rachunku różniczkowego.
Awatar użytkownika
tresbien
Użytkownik
Użytkownik
Posty: 122
Rejestracja: 18 lis 2008, o 11:47
Płeć: Mężczyzna
Lokalizacja: Z kompa
Podziękował: 70 razy

Stosując drugą pochodną, zbadać ekstrema funkcji.

Post autor: tresbien » 3 sty 2009, o 14:15

\(\displaystyle{ y= x^{3} -2x ^{2} +x}\)

Prosze bardzo o rozwiazanie tej funkcji.

frej

Stosując drugą pochodną, zbadać ekstrema funkcji.

Post autor: frej » 3 sty 2009, o 16:31

\(\displaystyle{ y'=3x^2-4x+1}\)
Szukamy ekstremów:
\(\displaystyle{ y'=0 \\ \Delta = 16-12=2^2 \\ x_1=\frac{4+2}{6}=1 \quad x_2=\frac{4-2}{6}=\frac{1}{3}}\)

\(\displaystyle{ y''=6x-4}\)

Teraz wystarczy podstawić \(\displaystyle{ x_1, x_2}\) i zapamiętać:
Jak \(\displaystyle{ f'(x)=0 \quad \quad f''(x)0}\) to mamy minimum lokalne

Awatar użytkownika
tresbien
Użytkownik
Użytkownik
Posty: 122
Rejestracja: 18 lis 2008, o 11:47
Płeć: Mężczyzna
Lokalizacja: Z kompa
Podziękował: 70 razy

Stosując drugą pochodną, zbadać ekstrema funkcji.

Post autor: tresbien » 3 sty 2009, o 16:41

frej, bardzo Ci dziekuje

Awatar użytkownika
tresbien
Użytkownik
Użytkownik
Posty: 122
Rejestracja: 18 lis 2008, o 11:47
Płeć: Mężczyzna
Lokalizacja: Z kompa
Podziękował: 70 razy

Stosując drugą pochodną, zbadać ekstrema funkcji.

Post autor: tresbien » 19 mar 2009, o 10:43

Przemienności:

\(\displaystyle{ x+y=y+x
x cdot y=y cdot x[ ex]

Łączności

\(\displaystyle{ x+(y+z)=(x+y)+z
x cdot (y cdot z)=(x cdot y) cdot z[ ex]

Rozdzielności

\(\displaystyle{ x(y+z)=xy+xz
x+yz=(x+y)(x+z)[ ex]

de Morgana

\(\displaystyle{ x_{1}+x _{2} +...+x _{n} = x _{1} cdot x _{2} cdot ... cdot x _{n}
x _{1} cdot x _{2} cdot ... cdot x _{n} = x_{1}+x _{2} +...+x _{n}[ ex]

Idempotentności

\(\displaystyle{ x+x=x [ ex]
x cdot x=x[ ex]

Sprzeczności

\(\displaystyle{ x+x=1
x cdot x=0

x+0=x
x cdot 0=0[ ex]

Podwójnej negacji

\(\displaystyle{ x=x[ ex]}\)}\)
}\)
}\)
}\)
}\)
}\)

ODPOWIEDZ