Udowodnić ograniczenie z góry ciągu e(n) przez 3.

Własności ciągów i zbieżność, obliczanie granic. Twierdzenia o zbieżności.
Kali
Użytkownik
Użytkownik
Posty: 40
Rejestracja: 3 lis 2007, o 12:51
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 3 razy
Pomógł: 2 razy

Udowodnić ograniczenie z góry ciągu e(n) przez 3.

Post autor: Kali » 2 sty 2009, o 18:23

Znalazłem następujące rozwiązanie, ale nie wszystkie działania są dla mnie zrozumiałe.
Link tutaj
Nie rozumiem skąd się wziął następujący warunek:
\(\displaystyle{ \forall k\in\{2,3\ldots n\}:\frac{1}{k!}}\)

miodzio1988

Udowodnić ograniczenie z góry ciągu e(n) przez 3.

Post autor: miodzio1988 » 2 sty 2009, o 18:29

Nie rozumiem skąd się wziął następujący warunek:
\(\displaystyle{ \forall k\in\{2,3\ldots n\}:\frac{1}{k!}}\)

Kali
Użytkownik
Użytkownik
Posty: 40
Rejestracja: 3 lis 2007, o 12:51
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 3 razy
Pomógł: 2 razy

Udowodnić ograniczenie z góry ciągu e(n) przez 3.

Post autor: Kali » 2 sty 2009, o 18:49

Ale w jaki sposób z tego wyższego zapisu, wykorzystując tę nierówność powstał ten drugi niezrozumiały przeze mnie zapis. Dokładnie jakim przekształceniom uległ wcześniejszy zapis?

Awatar użytkownika
max
Gość Specjalny
Gość Specjalny
Posty: 3306
Rejestracja: 10 gru 2005, o 17:48
Płeć: Mężczyzna
Lokalizacja: Lebendigentanz
Podziękował: 37 razy
Pomógł: 778 razy

Udowodnić ograniczenie z góry ciągu e(n) przez 3.

Post autor: max » 2 sty 2009, o 23:29

Do udowodnienia drugiej z wypisanych przez Ciebie nierówności zostały użyte szacowania:
\(\displaystyle{ \frac{1}{n!} qslant \frac{1}{2^{n-1}}}\) (no bo \(\displaystyle{ \frac{1}{l} qslant \frac{1}{2}}\) dla \(\displaystyle{ l\in \{2, \ldots, n\}}\))
oraz
\(\displaystyle{ \frac{n(n-1)\ldots(n-(k-1))}{n^k}< 1}\)
(no bo \(\displaystyle{ \frac{n - l}{n} < 1}\) dla \(\displaystyle{ l \{1, \ldots, k\},\ k qslant n}\))
co zresztą jest zaznaczone w dowodzie.

ODPOWIEDZ