[Nierówności] Nierówność cykliczna

Zadania z kółek matematycznych lub obozów przygotowujących do OM. Problemy z minionych olimpiad i konkursów matematycznych.
Regulamin forum
Wszystkie tematy znajdujące się w tym dziale powinny być tagowane tj. posiadać przedrostek postaci [Nierówności], [Planimetria], itp.. Temat może posiadać wiele różnych tagów. Nazwa tematu nie może składać się z samych tagów.
Awatar użytkownika
max
Gość Specjalny
Gość Specjalny
Posty: 3306
Rejestracja: 10 gru 2005, o 17:48
Płeć: Mężczyzna
Lokalizacja: Lebendigentanz
Podziękował: 37 razy
Pomógł: 778 razy

[Nierówności] Nierówność cykliczna

Post autor: max » 30 gru 2008, o 22:13

Niech \(\displaystyle{ n\in \mathbb{N}_{3} = \{3, 4, 5, \ldots\}}\) oraz \(\displaystyle{ 0<a_{1}\leqslant a_{2}\leqslant \ldots \leqslant a_{n}}\)
Wykaż, że:
\(\displaystyle{ \frac{a_{1}}{a_{2} + a_{3}} + \ldots + \frac{a_{n-2}}{a_{n-1} + a_{n}} + \frac{a_{n - 1}}{a_{n} + a_{1}} + \frac{a_{n}}{a_{1} + a_{2}}\geqslant \frac{n}{2}}\)

Miłej zabawy:)

Piotr Rutkowski
Gość Specjalny
Gość Specjalny
Posty: 2234
Rejestracja: 26 paź 2006, o 18:08
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 22 razy
Pomógł: 389 razy

[Nierówności] Nierówność cykliczna

Post autor: Piotr Rutkowski » 6 sty 2009, o 22:03

Może jakaś podpowiedź do elementarnego rozwiązania? Może popsuje zabawę, ale ja z marszu nic nie wymyśliłem.... (jak ktoś nad tym pracuje, to niech napisze)

Awatar użytkownika
max
Gość Specjalny
Gość Specjalny
Posty: 3306
Rejestracja: 10 gru 2005, o 17:48
Płeć: Mężczyzna
Lokalizacja: Lebendigentanz
Podziękował: 37 razy
Pomógł: 778 razy

[Nierówności] Nierówność cykliczna

Post autor: max » 6 sty 2009, o 22:36

Hmm, może poczekajmy jeszcze trochę. Sprawdź pw:)

ODPOWIEDZ