Wyprowadzić wzór

Całkowalność. Metody i obliczanie całek oznaczonych i nieoznaczonych. Pole pod wykresem. Równania i nierówności z wykorzystaniem rachunku całkowego. Wielowymiarowa całka Riemanna - w tym pola i objętości figur przestrzennych.
Awatar użytkownika
Dedemonn
Użytkownik
Użytkownik
Posty: 689
Rejestracja: 21 lut 2007, o 19:40
Płeć: Mężczyzna
Lokalizacja: Z kompa
Podziękował: 26 razy
Pomógł: 137 razy

Wyprowadzić wzór

Post autor: Dedemonn » 28 gru 2008, o 19:07

Jak w temacie na:

\(\displaystyle{ \int \frac{dx}{sin^nx}}\)

luka52
Gość Specjalny
Gość Specjalny
Posty: 8602
Rejestracja: 1 maja 2006, o 20:54
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 47 razy
Pomógł: 1817 razy

Wyprowadzić wzór

Post autor: luka52 » 29 gru 2008, o 00:09

  1. \(\displaystyle{ n =2k+1, \; k \mathbb{Z}}\)
    \(\displaystyle{ \int \frac{\mbox d x}{\sin^{2k+1} x} = t \frac{\sin x \; \mbox d x}{\sin^{2k+2} x} = t \frac{-(\cos x)' \, \mbox d x}{(1 - \cos^2 x)^{k+1}} = \ldots}\)
  2. \(\displaystyle{ n = 2k+2, \; k \mathbb{Z}}\)
    \(\displaystyle{ I_n = t \frac{\mbox d x}{\sin^n x}}\)
    \(\displaystyle{ I_n = I_{n-2} + t \frac{\cos^2 x }{\sin^{2k+2} x} \; \mbox d x}\)


    \(\displaystyle{ u = \cos x \quad \mbox d v = \frac{\cos x }{\sin^{2k+2} x} \; \mbox d x}\)
    \(\displaystyle{ \ldots}\)

Awatar użytkownika
przemk20
Użytkownik
Użytkownik
Posty: 1094
Rejestracja: 6 gru 2006, o 22:47
Płeć: Mężczyzna
Lokalizacja: Olesno
Podziękował: 45 razy
Pomógł: 236 razy

Wyprowadzić wzór

Post autor: przemk20 » 29 gru 2008, o 00:11


\(\displaystyle{ I_n = t \frac{\sin^2x + \cos^2x}{sin^n x} \mbox d x = I_{n-2} +
t \cos x \frac{cos x}{\sin^n x} \mbox d x \\
cos x = u, \ \ \frac{\cos x}{\sin^n x} = \mbox d v \\
-\sin x = \mbox d u, \ \ -\frac{1}{(n-1)sin^{n-1}x}= v \\
I_n= I_{n-2} -\frac{\cos x }{(n-1)\sin^{n-1}x} - \frac{1}{n-1}I_{n-2} =
-\frac{\cos x}{(n-1)\sin^{n-1}x} + \frac{n-2}{n-1} I_{n-2} \\
n\geq 2 \\}\)


Awatar użytkownika
Dedemonn
Użytkownik
Użytkownik
Posty: 689
Rejestracja: 21 lut 2007, o 19:40
Płeć: Mężczyzna
Lokalizacja: Z kompa
Podziękował: 26 razy
Pomógł: 137 razy

Wyprowadzić wzór

Post autor: Dedemonn » 29 gru 2008, o 12:53

Chyba bym nie wpadł na to, że lecąc przez części całkujemy \(\displaystyle{ \frac{cosx}{sin^nx}}\) i na dodatek że jeszcze coś z tego wyjdzie.
Thx.

ODPOWIEDZ