[Stereometria] Stereometria, ostrosłupy, rozkładanie na płaszczyzny

Zadania z kółek matematycznych lub obozów przygotowujących do OM. Problemy z minionych olimpiad i konkursów matematycznych.
Regulamin forum
Wszystkie tematy znajdujące się w tym dziale powinny być tagowane tj. posiadać przedrostek postaci [Nierówności], [Planimetria], itp.. Temat może posiadać wiele różnych tagów. Nazwa tematu nie może składać się z samych tagów.
patry93
Użytkownik
Użytkownik
Posty: 1251
Rejestracja: 30 sty 2007, o 20:22
Płeć: Mężczyzna
Lokalizacja: Koziegłówki/Wrocław
Podziękował: 352 razy
Pomógł: 32 razy

[Stereometria] Stereometria, ostrosłupy, rozkładanie na płaszczyzny

Post autor: patry93 » 27 gru 2008, o 15:06

Witam.

1) Dany jest ostrosłup \(\displaystyle{ SA_1 A_2 \ldots A_n \ (n qslant 3)}\) w którym suma kątów płaskich przy wierzchołku S jest większa od kąta półpełnego. Wykaż, że każda krawędź boczna tego ostrosłupa jest krótsza od połowy obwodu jego podstawy.

2) [Zadanie z 2 etapu II edycji OMG] Trójkąt ABC jest podstawą ostrosłupa ABCS, w którym \(\displaystyle{ \angle ASB = \angle BSC = \angle CSA = 20^{ \circ}}\).
Wykaż, że obwód trójkąta ABC jest nie mniejszy od długości każdej z krawędzi AS, BS i CS.

Ad 1. Pierwszy pomysł to rozłożenie na płaszczyznę, lecz dużo tam niestety nie zauważyłem...
Następnie pomyślałem nad indukcją (tak właściwie to można robić tego typu zadania za pomocą indukcji?), lecz nawet przy sprawdzaniu n=3 nic mi się nie udało.... :/

Ad 2. Oczywiście dużo nie wymyśliłem, ale są rozwiązania ogólnodostępne, o tutaj - http://www.om.edu.pl/omg/zadania/omg02_2r.pdf
Problem mam jednak ze zrozumieniem ostatnich linijek, tzn. \(\displaystyle{ CA+AB+BC= \ldots qslant \ldots}\)
Gdyby ktoś mógł to jakoś "obrazowo" wytłumaczyć, bo ja już tyle czasu nad tym spędziłem, że się poddaję...

Z góry dziękuję za pomoc.

Awatar użytkownika
Sylwek
Gość Specjalny
Gość Specjalny
Posty: 2711
Rejestracja: 21 maja 2007, o 14:24
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 155 razy
Pomógł: 654 razy

[Stereometria] Stereometria, ostrosłupy, rozkładanie na płaszczyzny

Post autor: Sylwek » 27 gru 2008, o 15:34

1. Rozpatrz siatkę powierzchni bocznej (tak jakbyś przeciął ten ostrosłup w dowolnej krawędzi) + nierówność trójkąta.

patry93
Użytkownik
Użytkownik
Posty: 1251
Rejestracja: 30 sty 2007, o 20:22
Płeć: Mężczyzna
Lokalizacja: Koziegłówki/Wrocław
Podziękował: 352 razy
Pomógł: 32 razy

[Stereometria] Stereometria, ostrosłupy, rozkładanie na płaszczyzny

Post autor: patry93 » 27 gru 2008, o 15:55

Hm....
Przez \(\displaystyle{ a_n}\) oznaczyłem dł. krawędzi podstawy, a \(\displaystyle{ b_n}\) dł. krawędzi bocznej.
Po rozłożeniu na płaszczyznę doszukałem się takich nierówności:
\(\displaystyle{ a_1 < b_1 + b_2 \\ \ldots \\ a_{n-1} < b_{n-1} + b_n \\ a_n < b_n + b_1}\)
Po zsumowaniu mam:
\(\displaystyle{ a_1 + a_2 + \ldots + a_n < 2 (b_1 + b_2 + \ldots + b_n) \\ \frac{a_1 + a_2 + \ldots + a_n}{2} < b_1 + b_2 + \ldots + b_n}\)
Natomiast mam wykazać, że
\(\displaystyle{ b_1 < P \ \ b_2 < P \ldots b_n < P}\), gdzie
\(\displaystyle{ P = \frac{a_1 + a_2 + \ldots + a_n}{2}}\)

Można to jakoś powiązać?

Awatar użytkownika
Sylwek
Gość Specjalny
Gość Specjalny
Posty: 2711
Rejestracja: 21 maja 2007, o 14:24
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 155 razy
Pomógł: 654 razy

[Stereometria] Stereometria, ostrosłupy, rozkładanie na płaszczyzny

Post autor: Sylwek » 27 gru 2008, o 16:16

Lemat: mamy trójkąt ABC i punkt D w jego wnętrzu, wówczas zachodzi: \(\displaystyle{ AC+BC>AD+BD}\)


Wróćmy do zadania, pokazuję rozwiązanie dla n=3, ogólne jest takie samo, tylko trzeba zamienić kilka symboli. Rozetnijmy wzdłuż najdłuższej krawędzi (niech będzie to krawędź EA=x:


Wówczas z lematu (poprowadź odcinek AD) i z nierówności trójkąta:
\(\displaystyle{ AB+BC+CD>AC+CD > AE+ED = 2x}\)

Ponieważ x była najdłuższą krawędzią boczną, mamy tezę.

patry93
Użytkownik
Użytkownik
Posty: 1251
Rejestracja: 30 sty 2007, o 20:22
Płeć: Mężczyzna
Lokalizacja: Koziegłówki/Wrocław
Podziękował: 352 razy
Pomógł: 32 razy

[Stereometria] Stereometria, ostrosłupy, rozkładanie na płaszczyzny

Post autor: patry93 » 27 gru 2008, o 16:51

O kurczę, przyznam, że nigdy bym na takie coś nie wpadł... :O

Ok, więc ja to rozbiłem sobie na 2 przypadki, tzn. n jest parzyste i nieparzyste.
Przedstawię może tylko jak to zrobiłem dla n nieparzystego
\(\displaystyle{ a_1 + a_2 + \ldots + a_n > A_1 A_3 + A_3 + A_5 + \ldots + A_{n-2} A_n + A_n A_1 > A_1 A_5 + \ldots + A_{n-3} A_1 > \ldots > A_1 A_{ \frac{n-1}{2} } + A_{ \frac{n+1}{2} } A_1 > A_1 S + A_1 S = 2 A_1 S}\)

Dla n parzystego zrobiłem analogicznie, ale nie musiałem się bawić w te ułamki w indeksach
Poprawnie?

O, przy okazji - Sylwek, czy robiąc to zadanie skorzystałeś z tzw. metody ekstremum podświadomie, czy z "pełną premedytacją"?
Troszkę znalazłem o tym w Internecie, m. in. tu:
http://www.mimuw.edu.pl/~sem/konferencj ... uzicki.pdf
Jest sposób na poznanie, czy należy zadanie robić tak, a nie inaczej, czy może jest to kwestia tylko i wyłącznie wprawy?

Awatar użytkownika
Sylwek
Gość Specjalny
Gość Specjalny
Posty: 2711
Rejestracja: 21 maja 2007, o 14:24
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 155 razy
Pomógł: 654 razy

[Stereometria] Stereometria, ostrosłupy, rozkładanie na płaszczyzny

Post autor: Sylwek » 27 gru 2008, o 17:18

patry93 pisze:tzw. metody ekstremum podświadomie, czy z "pełną premedytacją"?
Szczerze mówiąc pod tą nazwą pierwszy raz o tym słyszę. W każdym razie, analogicznie dałoby się udowodnić to dla każdej krawędzi kwitując to słowami: "z dowolności wyboru krawędzi bocznej wynika teza", więc akurat to zadanie nie jest dobrym przykładem na użycie tej metody.
patry93 pisze:Jest sposób na poznanie, czy należy zadanie robić tak, a nie inaczej, czy może jest to kwestia tylko i wyłącznie wprawy?
Tyle postów, a takie pytania . To może ja też odpowiem pytaniem - dlaczego komputery nie są używane w celu dowodzenia/obalania hipotez (nie mam na myśli sprawdzenia \(\displaystyle{ 10^{100...0}}\) przypadków, ale dowodzenie "matematyczne").

patry93
Użytkownik
Użytkownik
Posty: 1251
Rejestracja: 30 sty 2007, o 20:22
Płeć: Mężczyzna
Lokalizacja: Koziegłówki/Wrocław
Podziękował: 352 razy
Pomógł: 32 razy

[Stereometria] Stereometria, ostrosłupy, rozkładanie na płaszczyzny

Post autor: patry93 » 30 gru 2008, o 12:29

Sylwek pisze:Szczerze mówiąc pod tą nazwą pierwszy raz o tym słyszę. W każdym razie, analogicznie dałoby się udowodnić to dla każdej krawędzi kwitując to słowami: "z dowolności wyboru krawędzi bocznej wynika teza", więc akurat to zadanie nie jest dobrym przykładem na użycie tej metody.
No tak, ale byłoby więcej pisania :D Jednak ta metoda ekstremum do dobra rzecz :)
Sylwek pisze:dlaczego komputery nie są używane w celu dowodzenia/obalania hipotez
Bo nie myślą, podobnie jak ja... :|

Hm... tak się zastanawiam.... czy ten lemat:
Sylwek pisze:Lemat: mamy trójkąt ABC i punkt D w jego wnętrzu, wówczas zachodzi: \(\displaystyle{ AC+BC>AD+BD}\)
trzeba udowodnić (np. gdyby się przydał na OMG)


O, i co do zadania drugiego z OMG - to, że
\(\displaystyle{ AB+BC+AC = AB+ BC_3 + AC_2}\)
jest dla mnie jak najbardziej jasne, ale już to, że
\(\displaystyle{ AB+ BC_3 + AC_2 qslant C_2 C_3}\)
to nie do końca... akurat u mnie na rysunkach zawsze pojawia się trapez \(\displaystyle{ C_3 B A C_2}\) i wychodzi na to, że dłuższa podstawa trapezu jest zawsze mniejsza lub równa sumie długości pozostałych boków, dobrze to widzę?
I czy można to przyjąć za "pewnik" nie podając żadnego dowodu?

Awatar użytkownika
timon92
Użytkownik
Użytkownik
Posty: 1536
Rejestracja: 6 paź 2008, o 16:47
Płeć: Mężczyzna
Lokalizacja: Katowice
Podziękował: 4 razy
Pomógł: 436 razy

[Stereometria] Stereometria, ostrosłupy, rozkładanie na płaszczyzny

Post autor: timon92 » 30 gru 2008, o 13:15

patry93 pisze: I czy można to przyjąć za "pewnik" nie podając żadnego dowodu?
Jasne, ja napisałem wtedy (byłem wtedy na drugim etapie OMG ) coś w stylu "oczywiste jest, że..." i dostałem za to 6/6 punktów

patry93
Użytkownik
Użytkownik
Posty: 1251
Rejestracja: 30 sty 2007, o 20:22
Płeć: Mężczyzna
Lokalizacja: Koziegłówki/Wrocław
Podziękował: 352 razy
Pomógł: 32 razy

[Stereometria] Stereometria, ostrosłupy, rozkładanie na płaszczyzny

Post autor: patry93 » 30 gru 2008, o 13:51

Heh, to mnie uradowałeś timon92
Kurczę, niestety moja wyobraźnia przestrzenna szwankuje i nie wiem jak ma wyglądać ta siatka rozłożona na płaszczyznę... :/
Zrobiłem dwie wersje:


Czy któraś jest dobra?
Hm.... no i zastanawiam się nad wykazaniem, że ten obwód będzie większy też od AS i BS, ale to już chyba jakoś inaczej trzeba będzie? Bo trapezów tam nie widzę...

Awatar użytkownika
timon92
Użytkownik
Użytkownik
Posty: 1536
Rejestracja: 6 paź 2008, o 16:47
Płeć: Mężczyzna
Lokalizacja: Katowice
Podziękował: 4 razy
Pomógł: 436 razy

[Stereometria] Stereometria, ostrosłupy, rozkładanie na płaszczyzny

Post autor: timon92 » 30 gru 2008, o 13:58

Obie są dobre. A co do wykazania, że obwód jest większy niż AS i BS, to wystarczy napisać coś takiego: "Analogicznie dowodzi się dla krawędzi AS i BS"

W jakim programie to rysowałeś?

patry93
Użytkownik
Użytkownik
Posty: 1251
Rejestracja: 30 sty 2007, o 20:22
Płeć: Mężczyzna
Lokalizacja: Koziegłówki/Wrocław
Podziękował: 352 razy
Pomógł: 32 razy

[Stereometria] Stereometria, ostrosłupy, rozkładanie na płaszczyzny

Post autor: patry93 » 30 gru 2008, o 15:30

timon92 - program to Geonext. Znajdziesz go tutaj - http://geonext.uni-bayreuth.de/index.php?id=2453
timon92 pisze:Obie są dobre
Hm.... czyli aż tak źle z moją wyobraźnią nie jest, ale jednak wersja pierwsza jest chyba zła, bo "na oko" widać, że AS może być dłuższe od obwodu.... ?
timon92 pisze:wystarczy napisać coś takiego: "Analogicznie dowodzi się dla krawędzi AS i BS"
Heh, dobrze wiedzieć, że na OMG można takie skróty myślowe stosować, ale ja to zadanie robię dla siebie, aby czegoś się nauczyć i nadal nie bardzo wiem jak to wykazać :/
Tzn. jeśli przyjąć, że rysunek drugi jest dobry, to mamy \(\displaystyle{ AS qslant SC}\) i z pierwszej nierówności już wszystko ładnie wynika, ale właśnie nie wiem co zrobić w przypadku rysunku pierwszego...?

Awatar użytkownika
timon92
Użytkownik
Użytkownik
Posty: 1536
Rejestracja: 6 paź 2008, o 16:47
Płeć: Mężczyzna
Lokalizacja: Katowice
Podziękował: 4 razy
Pomógł: 436 razy

[Stereometria] Stereometria, ostrosłupy, rozkładanie na płaszczyzny

Post autor: timon92 » 30 gru 2008, o 15:56

patry93 pisze:Geonext
Dzięki
patry93 pisze:jednak wersja pierwsza jest chyba zła, bo "na oko" widać, że AS może być dłuższe od obwodu.... ?
na oko to chłop w szpitalu umarł

Jeśli już koniecznie chcesz tego dowodzić, to wystarczy siatkę narysować w trochę inny sposób (krawędź AS "na zewnątrz"; punkty \(\displaystyle{ A_1, A_2, A_3}\) nakładają się na siebie po złożeniu) i przeprowadzić analogiczny dowód.

ODPOWIEDZ