[Planimetria] Czworokąt opisany na okręgu (XLVII OM)

Zadania z kółek matematycznych lub obozów przygotowujących do OM. Problemy z minionych olimpiad i konkursów matematycznych.
Regulamin forum
Wszystkie tematy znajdujące się w tym dziale powinny być tagowane tj. posiadać przedrostek postaci [Nierówności], [Planimetria], itp.. Temat może posiadać wiele różnych tagów. Nazwa tematu nie może składać się z samych tagów.
binaj
Użytkownik
Użytkownik
Posty: 547
Rejestracja: 20 lis 2007, o 15:03
Płeć: Mężczyzna
Lokalizacja: Bielsko-Biała
Podziękował: 37 razy
Pomógł: 120 razy

[Planimetria] Czworokąt opisany na okręgu (XLVII OM)

Post autor: binaj » 26 gru 2008, o 20:43

Okrąg o środku O wpisany w czworokąt wypukły ABCD jest styczny do boków AB, BC, CD, DA odpowiednio w punktach K, L, M, N, przy czym proste KL i MN przecinają się w punkcie S.
Dowieść, że proste OS i BD są prostopadłe.

Awatar użytkownika
limes123
Użytkownik
Użytkownik
Posty: 666
Rejestracja: 21 sty 2008, o 22:48
Płeć: Mężczyzna
Lokalizacja: Ustroń
Podziękował: 26 razy
Pomógł: 93 razy

[Planimetria] Czworokąt opisany na okręgu (XLVII OM)

Post autor: limes123 » 26 gru 2008, o 21:57

Troche proste jak na OM... BD jest prosta biegunowa S (dosc znana wlasnosc) z czego od razu wynika, ze BD i OS sa prostopadle.

frej

[Planimetria] Czworokąt opisany na okręgu (XLVII OM)

Post autor: frej » 26 gru 2008, o 23:28

Że tak się zapytam, co to jest ta prosta biegunowa?

Awatar użytkownika
limes123
Użytkownik
Użytkownik
Posty: 666
Rejestracja: 21 sty 2008, o 22:48
Płeć: Mężczyzna
Lokalizacja: Ustroń
Podziękował: 26 razy
Pomógł: 93 razy

[Planimetria] Czworokąt opisany na okręgu (XLVII OM)

Post autor: limes123 » 26 gru 2008, o 23:42

Nie wiem czy w kazdej literaturze to jest tak nazywane ale jak akurat spotkalem sie z taka... W kazdym razie jak masz punkt P to prosta biegunowa punktu P wzgledem okregu O powstaje w nastepujacy sposob. Bierzesz obraz punktu P (powiedzmy P') w inwersji wzgledem okregu O i prowadzisz prosta prostopadla do P'O' (O' to srodek inwersji) przez P' (tak to chyba szlo). A jesli P lezy za okregiem to wystarczy wziac punkty stycznosci stycznych z P do tego okregu i prosta przez nie przechodzaca to biegunowa P.

frej

[Planimetria] Czworokąt opisany na okręgu (XLVII OM)

Post autor: frej » 26 gru 2008, o 23:48

Ok, wszystko jasne. Swoją drogą, to nie wiedziałem, że ta prosta może mieć swoją nazwę. Dzięki za wyjaśnienie.

binaj
Użytkownik
Użytkownik
Posty: 547
Rejestracja: 20 lis 2007, o 15:03
Płeć: Mężczyzna
Lokalizacja: Bielsko-Biała
Podziękował: 37 razy
Pomógł: 120 razy

[Planimetria] Czworokąt opisany na okręgu (XLVII OM)

Post autor: binaj » 27 gru 2008, o 20:38

pierwszy raz o tym słyszę ,
może ktoś wpadnie na bardziej elementarne rozwiązanie

Dumel
Użytkownik
Użytkownik
Posty: 2000
Rejestracja: 19 lut 2008, o 17:35
Płeć: Mężczyzna
Lokalizacja: Stare Pole/Kraków
Podziękował: 60 razy
Pomógł: 202 razy

[Planimetria] Czworokąt opisany na okręgu (XLVII OM)

Post autor: Dumel » 28 gru 2008, o 13:08

no to szkic troche prostszego rozwiązania:
(zakladam ze S jest blizej A niz C. moze nie ma to znaczenia dla poprawnosci tego rozumowania, ale nie chce mi sie nad tym zastanawiac )
\(\displaystyle{ X}\) niech bedzie punktem przeciecia \(\displaystyle{ MN}\) i \(\displaystyle{ OD}\). \(\displaystyle{ MN \perp OD}\) więc tez \(\displaystyle{ SX \perp OD}\). Analogicznie po drugiej stronie \(\displaystyle{ SY \perp OB}\). Z podobienstwa trojkatow: \(\displaystyle{ OX \cdot OD = R^2=OY \cdot OB}\). Teraz \(\displaystyle{ Z}\) niech bedzie takim punktem na prostej \(\displaystyle{ OD}\) ze \(\displaystyle{ BZ \perp OS}\) a \(\displaystyle{ W}\) niech bedzie punktem przeciecia \(\displaystyle{ BZ}\) i \(\displaystyle{ OS}\). z podobienstwa trojkatow \(\displaystyle{ OZW}\) i \(\displaystyle{ OXS}\) i z analogicznego podobienstwa z drugiej strony, otrzymujemy \(\displaystyle{ OY \cdot OB = OX \cdot OZ}\) a więc \(\displaystyle{ Z=D}\) c.k.d.
Ostatnio zmieniony 28 sty 2009, o 22:28 przez Dumel, łącznie zmieniany 1 raz.

Awatar użytkownika
limes123
Użytkownik
Użytkownik
Posty: 666
Rejestracja: 21 sty 2008, o 22:48
Płeć: Mężczyzna
Lokalizacja: Ustroń
Podziękował: 26 razy
Pomógł: 93 razy

[Planimetria] Czworokąt opisany na okręgu (XLVII OM)

Post autor: limes123 » 28 gru 2008, o 15:10

I jak ktos chce jeszcze powalczyc to mozna sprobowac z tym:
Niech F bedzie punktem przeciecia przekatnych czworokata KLMN. Udowodnic, ze O jest ortocentrum trojkata FST gdzie T jest punktem przeciecia KN z ML

ODPOWIEDZ