Zbadaj zbieznosc dwóch ciagów w poniższych topologiach

Własności przestrzeni; metryczność, zwartość, spójność... Przekształcenia i deformacje... Teoria wymiaru... słowem - topologia.
Awatar użytkownika
mol_ksiazkowy
Użytkownik
Użytkownik
Posty: 6098
Rejestracja: 9 maja 2006, o 12:35
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 2531 razy
Pomógł: 671 razy

Zbadaj zbieznosc dwóch ciagów w poniższych topologiach

Post autor: mol_ksiazkowy » 24 gru 2008, o 01:31

Zbadaj zbieznosc tych dwóch ciagów w ponizszych topologiach \(\displaystyle{ (X=R, \tau)}\) :
\(\displaystyle{ x_n =\frac{1}{n}}\), \(\displaystyle{ y_n =n}\)
a) dyskretna
b) antydyskretna
c) dopelnin skonczonych
d)dopełnien przeliczalnych
e) dopelnin skonczonych z wyroznionym punktem \(\displaystyle{ x=0}\)
f) z baza \(\displaystyle{ B= { [x,y ) , x R }}\)
Ostatnio zmieniony 24 gru 2008, o 11:05 przez mol_ksiazkowy, łącznie zmieniany 1 raz.

Awatar użytkownika
max
Gość Specjalny
Gość Specjalny
Posty: 3306
Rejestracja: 10 gru 2005, o 17:48
Płeć: Mężczyzna
Lokalizacja: Lebendigentanz
Podziękował: 37 razy
Pomógł: 778 razy

Zbadaj zbieznosc dwóch ciagów w poniższych topologiach

Post autor: max » 24 gru 2008, o 14:50

W topologii dyskretnej zbieżne są tylko ciągi stałe. W topologii antydyskretnej każdy ciąg jest zbieżny do każdego punktu przestrzeni.
W topologii dopełnień zbiorów skończonych na zbiorze nieskończonym każdy ciąg, który nie ma podciągu stałego zbiega do każdego punktu.
W topologii dopełnień zbiorów przeliczalnych nie ma ciągów zbieżnych.
Co do topologii dopełnień skończonych z wyróżnionym punktem to nie wiem jak się ja definiuje.
W topologii 'strzałki' pierwszy z tych ciągów jest zbieżny, a drugi rozbieżny.

(wszędzie powyżej pisząc 'ciąg' miałem na myśli ciąg przeliczalny)

edit. drobna poprawka.
Ostatnio zmieniony 24 gru 2008, o 16:29 przez max, łącznie zmieniany 1 raz.

Awatar użytkownika
mol_ksiazkowy
Użytkownik
Użytkownik
Posty: 6098
Rejestracja: 9 maja 2006, o 12:35
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 2531 razy
Pomógł: 671 razy

Zbadaj zbieznosc dwóch ciagów w poniższych topologiach

Post autor: mol_ksiazkowy » 24 gru 2008, o 16:00

Quote:
Co do topologii dopełnień skończonych z wyróżnionym punktem to nie wiem jak się ja definiuje.
o tak \(\displaystyle{ X}\) jest nieskonczony , i \(\displaystyle{ x_0 X}\), \(\displaystyle{ \tau= \{ A : X \backslash A \ jest skonczony \ lub \ x_0 A \}}\)

Ciekawa topologia, Na marginesie, w tej topologii zbiory skonczone sa domkniete, a dla nieskonczonych mamy \(\displaystyle{ cl(A)=A \cup \{ x_0 \}}\) , podobnie nieco wnetzre

Awatar użytkownika
max
Gość Specjalny
Gość Specjalny
Posty: 3306
Rejestracja: 10 gru 2005, o 17:48
Płeć: Mężczyzna
Lokalizacja: Lebendigentanz
Podziękował: 37 razy
Pomógł: 778 razy

Zbadaj zbieznosc dwóch ciagów w poniższych topologiach

Post autor: max » 24 gru 2008, o 16:22

A, tak, to bardziej z 'wyrzuconym' niż z 'wyróżnionym' punktem:)
Można tak kombinować z dopełnieniami zbiorów o mocy co najwyżej takiej jak nam trzeba, np w topologii wyrzuconego punktu i dopełnień zbiorów co najwyżej przeliczalnych można pokazać, że nie działa ciągowa charakteryzacja domknięcia.

W tej topologii zbieżny (do \(\displaystyle{ x_{0}}\)) jest każdy ciąg, który nie ma podciągu stałego różnego od \(\displaystyle{ x_{0}}\)

ODPOWIEDZ