Suma liczb podzielnych przez 3; ilość pierwiastków równania

Dział przeznaczony przede wszystkim dla licealistów. Róznica i iloraz ciągu. Suma ciągu arytemtycznego oraz geometrycznego.
MakCis
Użytkownik
Użytkownik
Posty: 1023
Rejestracja: 10 lut 2008, o 15:45
Płeć: Mężczyzna
Podziękował: 72 razy
Pomógł: 15 razy

Suma liczb podzielnych przez 3; ilość pierwiastków równania

Post autor: MakCis » 22 gru 2008, o 17:20

1. Zbadaj liczbę pierwiastków równania \(\displaystyle{ a + ax + ax^2 + ax^3 + ... + ax^{n-1} + ... = 2x-1}\) w zależności od parametru \(\displaystyle{ a}\).

q = x ; warunek zbieżności jest spełniony gdy \(\displaystyle{ x \in (-1,1)}\)

zatem lewa strona równania jest równa \(\displaystyle{ \frac{a}{1-x}}\). Po przekształceniach otrzymuję: \(\displaystyle{ 2x^2 - 3x +1 +a = 0}\) skąd \(\displaystyle{ \Delta = 1-8a}\).

równanie nie ma rozwiązań gdy delta jest mniejsza od zera zatem \(\displaystyle{ a > \frac{1}{8}}\)
jedno rozwiązanie gdy delta jest równa zeru zatem \(\displaystyle{ a = \frac{1}{8}}\)
i dwa rozwiązanie gdy delta większa od zera zatem \(\displaystyle{ a < \frac{1}{8}}\)

2. Oblicz sumę tych wszystkich liczb n podzielnych przez 3, które spełniają nierówność \(\displaystyle{ \log_22n + \log_44n + \log_88n < 14}\).

Najpierw rozwiązałem nierówność otrzymując że n < 64 co oznacza że muszę policzyć sumę pierwszych, 63 liczb podzielnych przez 3. Jest to ciąg o różnicy równej 3 i wyrazie pierwszym równym 3, zatem suma \(\displaystyle{ S = \frac{ 2 3 + (63-1) 3}{2} 63 = 6048}\)

Co jest nie tak?

Symetralna
Użytkownik
Użytkownik
Posty: 183
Rejestracja: 26 wrz 2007, o 10:07
Płeć: Kobieta
Lokalizacja: Dąbrowa Górnicza
Pomógł: 56 razy

Suma liczb podzielnych przez 3; ilość pierwiastków równania

Post autor: Symetralna » 22 gru 2008, o 21:43

W 2 zadaniu nie zgdadza się liczba wyrazów. zamiast 63 powinno być 21.
A w zadaniu 1 w ogóle nie wziąłeś pod uwagę założenia, które sam napisałeś (x z przedziału (-1,1) ).

MakCis
Użytkownik
Użytkownik
Posty: 1023
Rejestracja: 10 lut 2008, o 15:45
Płeć: Mężczyzna
Podziękował: 72 razy
Pomógł: 15 razy

Suma liczb podzielnych przez 3; ilość pierwiastków równania

Post autor: MakCis » 22 gru 2008, o 22:57

W 2 zadaniu nie zgdadza się liczba wyrazów. zamiast 63 powinno być 21.
A skąd to masz? Mi wyszło że \(\displaystyle{ n}\)

Symetralna
Użytkownik
Użytkownik
Posty: 183
Rejestracja: 26 wrz 2007, o 10:07
Płeć: Kobieta
Lokalizacja: Dąbrowa Górnicza
Pomógł: 56 razy

Suma liczb podzielnych przez 3; ilość pierwiastków równania

Post autor: Symetralna » 22 gru 2008, o 23:42

W zadaniu 2 nie chodzi o to, by tych liczb było 63, ale aby największa z nich była równa 63.

A w zadaniu 1 aby x był rozwiązaniem równania musi być z przedziału (-1,1), a to oznacza, że nie wystarczy delta do określenia ile będzie pierwiastków, te pierwiastki muszą jeszcze spełniać określone warunki.
Np 0 rozwiązań będzie też wtedy gdy :

\(\displaystyle{ \Delta qslant 0}\)

i oba pierwiastki będą większe od 1 lub mniejsze od -1

ODPOWIEDZ