Równanie z parametrem - jak zrobić?

Zagadnienia dot. funkcji logarytmicznych i wykładniczych. RÓWNANIA I NIERÓWNOŚCI.
Mikolaj9
Użytkownik
Użytkownik
Posty: 535
Rejestracja: 19 gru 2008, o 15:52
Płeć: Mężczyzna
Lokalizacja: Łódź
Podziękował: 49 razy
Pomógł: 61 razy

Równanie z parametrem - jak zrobić?

Post autor: Mikolaj9 » 19 gru 2008, o 16:02

Wygląda ono tak:

Określ liczbę rozwiązań równania

m(\(\displaystyle{ 4^{x}}\) - \(\displaystyle{ 2^{x}}\)) = 1-m

w zależności od parametru m.

aga92
Użytkownik
Użytkownik
Posty: 324
Rejestracja: 28 mar 2008, o 09:23
Płeć: Kobieta
Lokalizacja: Opole
Podziękował: 1 raz
Pomógł: 121 razy

Równanie z parametrem - jak zrobić?

Post autor: aga92 » 19 gru 2008, o 16:23

\(\displaystyle{ m(4^{x} - 2^{x} ) = 1 - m \\ m \cdot (2^{x})^{2} - m \cdot 2^{x} - 1 + m = 0}\)

Teraz podstaw \(\displaystyle{ t = 2^{x}}\), \(\displaystyle{ t>0}\).

\(\displaystyle{ m \cdot t^{2} - m \cdot t - 1 + m = 0}\)

\(\displaystyle{ 1^{o}}\) \(\displaystyle{ m = 0}\) - dla tego m zero rozwiązań

\(\displaystyle{ 2^{o}}\) \(\displaystyle{ m \neq 0}\)
\(\displaystyle{ m \cdot t^{2} - m \cdot t - 1 + m = 0}\)
\(\displaystyle{ \begin{cases} \Delta>0 \\ t_{1} \cdot t_{2}>0 \\ t_{1} + t_{2} > 0 \end{cases}}\) - dwa rozwiązania

\(\displaystyle{ \begin{cases} \Delta = 0 \\ t_{0} > 0 \end{cases}}\) - jedno rozwiązanie

Brak rozwiązań dla pozostałych wartości \(\displaystyle{ m}\)

traum15
Użytkownik
Użytkownik
Posty: 2
Rejestracja: 16 gru 2008, o 22:54
Płeć: Kobieta
Lokalizacja: Mława
Pomógł: 1 raz

Równanie z parametrem - jak zrobić?

Post autor: traum15 » 19 gru 2008, o 16:33

1. Pomnóż wyrazy w nawiasie przez liczbę m.
2. Uporządkuj żeby miało ręce i nogi i przypominało funkcję.
3. Zauważymy wówczas, ze 4 do x można zapisać w postaci 2 do 2x.
4. Wprowadzamy oznaczenie pomocnicze, czyli za 2 do x podstawimy np. t., ale t musi być liczbą dodatnią
3. Wyjdzie nam dokładnie: mt^2 - t + m - 1 = 0
4. Rozwiązujemy po kolei założenia, dla których ma odpowiednio:
- nie ma rozwiązania kiedy delta mniejsza od 0
- 1 rozwiązanie kiedy delta jest równa 0
- 2 rozwiązania kiedy delta jest większa od zera
- 1 rozwiązanie dla m=o i wtedy t=-1 ale te nie może być ujemne czyli odrzucamy ten wynik
5. Po rozwiązaniu założeń trzeba sprawdzić czy nie są one ujemne i te ujemne należy odrzucić.
6. Przyrównać wyniki do naszej liczby te i rozwiązać.
7. Zadanie rozwiązane, mam nadzieję, że dobrze. Miałam to całkiem niedawno co prawda, ale mogłam coś przeoczyć.

Mikolaj9
Użytkownik
Użytkownik
Posty: 535
Rejestracja: 19 gru 2008, o 15:52
Płeć: Mężczyzna
Lokalizacja: Łódź
Podziękował: 49 razy
Pomógł: 61 razy

Równanie z parametrem - jak zrobić?

Post autor: Mikolaj9 » 19 gru 2008, o 17:13

Ok, dzięki.
Mam jeszcze jedno, i nie wiem czy dobrze robię, bo też jakoś mi wynik nie może wyjść.
Treść brzmi: Wyznacz wszystkie wartości parametru m, dla których równanie m tylko jedno rozwiązanie.

\(\displaystyle{ 16x^{2}}\) + ( \(\displaystyle{ 2^{\frac{1+4m}{m}}\) - 24)x + 1 = 0

aga92
Użytkownik
Użytkownik
Posty: 324
Rejestracja: 28 mar 2008, o 09:23
Płeć: Kobieta
Lokalizacja: Opole
Podziękował: 1 raz
Pomógł: 121 razy

Równanie z parametrem - jak zrobić?

Post autor: aga92 » 19 gru 2008, o 17:34

\(\displaystyle{ \Delta = 0 \Rightarrow (2^{ \frac{1 + 4m}{m}}-24)^{2} - 4 \cdot 16 \cdot 1 = 0 \Rightarrow (2^{4 + \frac{1}{m} })^{2} - 48 \cdot 2^{4 + \frac{1}{m}} + 24^{2} - 64 = 0}\)

Teraz podstawienie: \(\displaystyle{ t = 2^{4 + \frac{1}{m}}}\), \(\displaystyle{ t > 0}\)

\(\displaystyle{ t^{2} - 48 t + 512 = 0}\)

\(\displaystyle{ (t - 32)(t - 16) = 0}\)

\(\displaystyle{ t = 32 = 2^{5}}\) lub \(\displaystyle{ t = 16 = 2^{4}}\)

Powracamy do podstawienia
\(\displaystyle{ 2^{4 + \frac{1}{m}} = 2^{5}}\) lub \(\displaystyle{ 2^{4 + \frac{1}{m}}= 2^{4}}\)

\(\displaystyle{ \frac{1}{m} = 1}\) lub \(\displaystyle{ \frac{1}{m} = 0}\) - sprzeczność

\(\displaystyle{ m = 1}\)

ODPOWIEDZ