Równania trygonometryczne

Własności funkcji trygonometrycznych i cyklometrycznych. Tożsamości. RÓWNANIA I NIERÓWNOŚCI.
choobek
Użytkownik
Użytkownik
Posty: 21
Rejestracja: 17 wrz 2008, o 17:56
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 1 raz

Równania trygonometryczne

Post autor: choobek » 15 gru 2008, o 21:20

Z wielu równań trygonometrycznych, które rozwiązałem, nie wiem jak zrobić te trzy:

1. \(\displaystyle{ \cos ^{2} {x}=\cos{x} \sin{3x}}\)

2. \(\displaystyle{ \cos {3x}+\sin{3x}=\cos{x} + \sin{x}}\)

3. \(\displaystyle{ \sqrt{3} \cos{x}+\sin{x}= \frac{7}{4}}\)

Proszę o pomoc. Zazwyczaj staję gdzieś po dwóch krokach i nie wiem co dalej zrobić.. Nie widzę po prostu któregoś ze wzorów w tych równaniach.

Awatar użytkownika
Wicio
Użytkownik
Użytkownik
Posty: 1318
Rejestracja: 13 maja 2008, o 21:22
Płeć: Mężczyzna
Podziękował: 3 razy
Pomógł: 561 razy

Równania trygonometryczne

Post autor: Wicio » 16 gru 2008, o 11:34

3)
\(\displaystyle{ \sqrt{3} \cos{x}+\sin{x}= \frac{7}{4}}\)/:2
\(\displaystyle{ \frac{\sqrt{3}}{2} \cos{x}+ \frac{1}{2} \sin{x}= \frac{7}{8}}\)
\(\displaystyle{ cos( \frac{\pi}{6})cosx+ sin(\frac{\pi}{6})sinx= \frac{7}{8}}\)

Korzystasz ze wzorów na iloczyn dwóch cosinusów i dwóch sinusów. Cosinusy zamieniają się na cosinusy, a sinusy też na cosinusy, wiec masz same cosinusy, i dalej dasz radę

ODPOWIEDZ