Proste problemy dotyczące wzorów skróconego mnożenia, ułamków, proporcji oraz innych przekształceń.
-
józef92
- Użytkownik

- Posty: 660
- Rejestracja: 13 gru 2008, o 21:01
- Płeć: Mężczyzna
- Lokalizacja: Bolesławiec
- Podziękował: 263 razy
- Pomógł: 3 razy
Post
autor: józef92 » 14 gru 2008, o 12:39
\(\displaystyle{ \frac{2}{3x+5}\legslant 1}\)
-
maise
- Użytkownik

- Posty: 1327
- Rejestracja: 25 maja 2008, o 15:36
- Płeć: Kobieta
- Podziękował: 5 razy
- Pomógł: 335 razy
Post
autor: maise » 14 gru 2008, o 12:49
Pomnóż obie strony przez mianownik:
\(\displaystyle{ \frac{2}{3x+5} qslant 1\\
\\
2 qslant 3x+5}\)
Dalej sobie poradzisz.
-
józef92
- Użytkownik

- Posty: 660
- Rejestracja: 13 gru 2008, o 21:01
- Płeć: Mężczyzna
- Lokalizacja: Bolesławiec
- Podziękował: 263 razy
- Pomógł: 3 razy
Post
autor: józef92 » 14 gru 2008, o 12:52
Dałem Ci plusa, ale niestety źle rozumujesz. To nie tak.
-
maise
- Użytkownik

- Posty: 1327
- Rejestracja: 25 maja 2008, o 15:36
- Płeć: Kobieta
- Podziękował: 5 razy
- Pomógł: 335 razy
Post
autor: maise » 14 gru 2008, o 12:54
Dlaczego?
-
józef92
- Użytkownik

- Posty: 660
- Rejestracja: 13 gru 2008, o 21:01
- Płeć: Mężczyzna
- Lokalizacja: Bolesławiec
- Podziękował: 263 razy
- Pomógł: 3 razy
Post
autor: józef92 » 14 gru 2008, o 12:55
W odpowiedziach mam że trzeba przenieś 1 na lewą stronę, nastepnie jest coś w nawiasach. Za bardzo nie wiem o co chodzi juz..
-
maise
- Użytkownik

- Posty: 1327
- Rejestracja: 25 maja 2008, o 15:36
- Płeć: Kobieta
- Podziękował: 5 razy
- Pomógł: 335 razy
Post
autor: maise » 14 gru 2008, o 12:59
Rozwiązaniem jest \(\displaystyle{ x qslant 1}\). A co masz dalej w tych nawiasach?
-
marcinn12
- Użytkownik

- Posty: 882
- Rejestracja: 23 sty 2007, o 15:06
- Płeć: Kobieta
- Podziękował: 61 razy
- Pomógł: 193 razy
Post
autor: marcinn12 » 14 gru 2008, o 13:01
Oczywiście ze nie wolno mnożyć bo nie wiadomo jaki znak ma wyrażenie w mianowniku. Przenieśc 1 sprowadź do wspołnego mianownika.
\(\displaystyle{ \frac{2}{3x+5} - \frac{3x+5}{3x+5} qslant 0}\)
\(\displaystyle{ \frac{-3x-3}{3x+5} qslant 0}\)
Przejście do postaci iloczynowej:
\(\displaystyle{ (-3x-3)(3x+5) qslant 0}\) i \(\displaystyle{ x - \frac{5}{3}}\)
Dalej już pójdzie. Co nie? Rysujesz sobie parabole skierowaną ramionami do góry z miejscami zerowymi w punktach -1 i -5/3. I odczytujesz z wykresu, ze: \(\displaystyle{ x (-\infty, -\frac{5}{3}) + }\)
Ostatnio zmieniony 14 gru 2008, o 13:09 przez
marcinn12, łącznie zmieniany 3 razy.
-
józef92
- Użytkownik

- Posty: 660
- Rejestracja: 13 gru 2008, o 21:01
- Płeć: Mężczyzna
- Lokalizacja: Bolesławiec
- Podziękował: 263 razy
- Pomógł: 3 razy
Post
autor: józef92 » 14 gru 2008, o 13:06
Czy wyjdzie z tego funkcja kwadratowa i obliczenie miejsc zerowych?