Zadania - z parametrem

Zagadnienia dot. funkcji kwadratowej. RÓWNANIA I NIERÓWNOŚCI kwadratowe i pierwiastkowe. Układy równań stopnia 2.
zico232
Użytkownik
Użytkownik
Posty: 39
Rejestracja: 9 gru 2008, o 23:00
Płeć: Mężczyzna
Podziękował: 4 razy

Zadania - z parametrem

Post autor: zico232 » 10 gru 2008, o 15:47

1. Dla jakich wartości parametru m wykresy funkcji \(\displaystyle{ y=x^2-mx+m+2}\), y=mx mają 2 punkty wspólne?

2. Wykaż, że zbiór wartości funkcji, która każdej liczbie rzeczywistej m przyporządkowuje liczbę rozwiązań równania \(\displaystyle{ x^2-(m+4)x+2m=0}\) jest jednoelementowy. Wyznacz wzór i naszkicuj wykres tej funkcji oraz na jego podstawie ustal, czy jest to funkcja parzysta czy nieparzysta.

Miałem zbiór zadań cały do rozwiązania na piątek i zostały mi 4 zadanka, oto dwa z nich ) z góry dzieki )

Zapoznaj się z instrukcją LaTeX-a http://matematyka.pl/latex.htm
luka52
Ostatnio zmieniony 10 gru 2008, o 17:14 przez zico232, łącznie zmieniany 1 raz.

anna_
Użytkownik
Użytkownik
Posty: 16293
Rejestracja: 26 lis 2008, o 20:14
Płeć: Kobieta
Podziękował: 28 razy
Pomógł: 3233 razy

Zadania - z parametrem

Post autor: anna_ » 10 gru 2008, o 16:44

1.
\(\displaystyle{ x^2-mx+m+2=mx \\
x^2-2mx+m+2=0 \\
\Delta>0 \\
\Delta=4m^2-4m-8 \\
\Delta=4(m+1)(m-2) \\
(m+1)(m-2) >0 \\
m (- -1)\cup(2,+ )}\)


[ Dodano: 10 Grudnia 2008, 16:53 ]
2.
\(\displaystyle{ x^2-(m+4)x+2m=0 \
Delta=[-(m+4)^2-4 1 2m \
Delta=m^2+16}\)


Delta jest większa od zera dla każdego \(\displaystyle{ m R}\)
Tzn, że równanie ma dwa pierwiastki.

\(\displaystyle{ f(m)=2, m R}\)

ODPOWIEDZ