zbieżności szeregów

Własności ciągów i zbieżność, obliczanie granic. Twierdzenia o zbieżności.
K4rol
Użytkownik
Użytkownik
Posty: 301
Rejestracja: 18 cze 2007, o 22:01
Płeć: Mężczyzna
Lokalizacja: Elbląg
Podziękował: 6 razy
Pomógł: 7 razy

zbieżności szeregów

Post autor: K4rol » 7 gru 2008, o 17:25

1.\(\displaystyle{ \sum_{n=1}^{\infty}(\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+2}})}\)
jaki tu będzie szereg porównawczy? bo i w liczniku i w mianowniku n w tej samej potędze... czy może warunek konieczny sprawdzić wpierw? i jak nie 0 to rozbieżny i tyle :}

2. \(\displaystyle{ \sum_{n=1}^{\infty}(\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n^{2}+2}})}\)
tu z kolei szereg porównawczy to będzie 1/n tak?

3. \(\displaystyle{ \sum_{n=1}^{\infty}\sqrt[n]{cos\frac{1}{n})}}\)

4. \(\displaystyle{ \sum_{n=1}^{\infty}\frac{2^{n}+5^{n}}{5^{n}+3^{n}}}\)
no to
\(\displaystyle{ \lim_{n \to }\frac{2^{n+1}+5^{n+1}}{5^{n+1}+3^{n+1}}\cdot \frac{5^{n}+3^{n}}{2^{n}+5^{n}}}\)
i z tego mnie wychodzi 1 a winno wyjść 0 i wtedy ładnie widać że zbieżny.. ogólnie to wyłączam wspólny czynnik przed nawias i skracam.. i wychodzi mnie 1*1 na końcu

ODPOWIEDZ