Nierówność

Od funkcji homograficznych do bardziej skomplikowanych ilorazów wielomianów. Własności. RÓWNANIA I NIERÓWNOŚCI.
dawidczaju
Użytkownik
Użytkownik
Posty: 20
Rejestracja: 25 lut 2007, o 19:14
Płeć: Mężczyzna
Lokalizacja: Zabrze

Nierówność

Post autor: dawidczaju » 2 gru 2008, o 19:51

Zad1.\(\displaystyle{ \left| x\right|}\)\(\displaystyle{ -}\)\(\displaystyle{ 2}\)\(\displaystyle{ \left| \frac{x}{x+3} \right|}\)\(\displaystyle{ ft| x\right|+2 }{ ft| x\right| -1} \right|}\)\(\displaystyle{ }\)

anna_
Użytkownik
Użytkownik
Posty: 16292
Rejestracja: 26 lis 2008, o 20:14
Płeć: Kobieta
Podziękował: 28 razy
Pomógł: 3233 razy

Nierówność

Post autor: anna_ » 3 gru 2008, o 01:43

Zad 1.
\(\displaystyle{ \left| x\right|}\)\(\displaystyle{ -}\)\(\displaystyle{ 2}\)\(\displaystyle{ \left| \frac{x}{x+3} \right|}\)\(\displaystyle{ -3}\)
\(\displaystyle{ \begin{cases} x qslant 0 \\ \frac{x}{x-3} qslant 0 \\ x-2 \frac{x}{x+3} qslant 0 \\ \frac{x}{x-3} ft| x\right|+2 }{ ft| x\right| -1} \right|}\)\(\displaystyle{ ft| x\right|+2 }{ ft| x\right| -1}-3 \\ \frac{3x+2}{x-1}}\)

dawidczaju
Użytkownik
Użytkownik
Posty: 20
Rejestracja: 25 lut 2007, o 19:14
Płeć: Mężczyzna
Lokalizacja: Zabrze

Nierówność

Post autor: dawidczaju » 3 gru 2008, o 18:27

Coś jest nie tak z zadaniem pierwszym. Po wyliczeniu wszystkich nierówności wspólne przedziały mijają sie z odpowiedzią.

Odpowiedz to:

\(\displaystyle{ x (-6,-3)\cup(-3,3).}\)

anna_
Użytkownik
Użytkownik
Posty: 16292
Rejestracja: 26 lis 2008, o 20:14
Płeć: Kobieta
Podziękował: 28 razy
Pomógł: 3233 razy

Nierówność

Post autor: anna_ » 5 gru 2008, o 14:53

Zad 1.
\(\displaystyle{ \left| x\right|}\)\(\displaystyle{ -}\)\(\displaystyle{ 2}\)\(\displaystyle{ \left| \frac{x}{x+3} \right|}\)\(\displaystyle{ <2}\)
Założenie \(\displaystyle{ x \neq -3}\)
\(\displaystyle{ \begin{cases} x \geqslant 0 \\ \frac{x}{x+3} \geqslant 0 \\ x-2 \frac{x}{x+3} <2 \end{cases}}\)
lub
\(\displaystyle{ \begin{cases} x \geqslant 0 \\ \frac{x}{x+3} <0 \\ x+2 \frac{x}{x+3} <2 \end{cases}}\)
lub
\(\displaystyle{ \begin{cases} x< 0 \\ \frac{x}{x+3} <0 \\ -x+2 \frac{x}{x+3} <2 \end{cases}}\)
lub
\(\displaystyle{ \begin{cases} x< 0 \\ \frac{x}{x+3} \geqslant 0 \\ -x-2 \frac{x}{x+3} <2 \end{cases}}\)

Przepraszam bardzo, w II nierówności, w każdym układzie powinno być w mianowniku \(\displaystyle{ x+3}\) a nie \(\displaystyle{ x-3}\)

ODPOWIEDZ