Prawdopodobieństwo, ilość żetonów

Definicja klasyczna. Prawdopodobieństwo warunkowe i całkowite. Zmienne losowe i ich parametry. Niezależność. Prawa wielkich liczb oraz centralne twierdzenia graniczne i ich zastosowania.
prs613
Użytkownik
Użytkownik
Posty: 153
Rejestracja: 22 wrz 2008, o 17:45
Płeć: Mężczyzna
Lokalizacja: Z miasta
Podziękował: 147 razy

Prawdopodobieństwo, ilość żetonów

Post autor: prs613 » 30 lis 2008, o 13:40

W pudełku znajdują się żetony. Wśród nich jest 6 żetonów o nominale 5 zł oraz n żetonów o nominale 10 zł. Losujemy z pudełka dwa żetony. Prawdopodobieństwo zdarzenia polegającego na wylosowaniu obu żetonów o nominale 10 zł jest równe \(\displaystyle{ \frac{1}{2}}\). Oblicz n.

yevgienij
Użytkownik
Użytkownik
Posty: 48
Rejestracja: 24 lis 2008, o 12:53
Płeć: Mężczyzna
Lokalizacja: radom
Podziękował: 4 razy
Pomógł: 12 razy

Prawdopodobieństwo, ilość żetonów

Post autor: yevgienij » 1 gru 2008, o 00:03

\(\displaystyle{ \frac{n}{n+6} * \frac{n-1}{n+5} = \frac{1}{2}}\)
\(\displaystyle{ \frac{n}{n+6} = \frac{n+5}{2n-2}}\)
\(\displaystyle{ (2n)^{2}-2n=n ^{2}+5n+6n+30}\)
przerzucamy na jedna strone
\(\displaystyle{ n ^{2} -13n-30=0}\)
liczymy delte (pamietajac ze n>0)
\(\displaystyle{ \Delta=169+120=289}\)
\(\displaystyle{ \sqrt{\Delta}=17}\)
otrzymujemy finalnie
\(\displaystyle{ n=15}\)

ODPOWIEDZ