Równania trygonometryczne

Własności funkcji trygonometrycznych i cyklometrycznych. Tożsamości. RÓWNANIA I NIERÓWNOŚCI.
Z_i_o_M_e_K
Użytkownik
Użytkownik
Posty: 119
Rejestracja: 16 paź 2008, o 19:26
Płeć: Mężczyzna
Lokalizacja: TM
Podziękował: 46 razy

Równania trygonometryczne

Post autor: Z_i_o_M_e_K » 29 lis 2008, o 21:48

Rozwiąż równania:

a) \(\displaystyle{ (sinx + cosx) ^{2} = cos2x}\)

b) \(\displaystyle{ cos ^{4}x - sin ^{4}x =sin4x}\)

c)\(\displaystyle{ sin ^{4}x + cos ^{4}x =cos4x}\)

d)\(\displaystyle{ sin ^{4} \frac{x}{3} + cos ^{4} \frac{x}{3} = \frac{5}{8}}\)

Awatar użytkownika
Wicio
Użytkownik
Użytkownik
Posty: 1318
Rejestracja: 13 maja 2008, o 21:22
Płeć: Mężczyzna
Podziękował: 3 razy
Pomógł: 561 razy

Równania trygonometryczne

Post autor: Wicio » 29 lis 2008, o 22:58

a)
\(\displaystyle{ (sinx + cosx) ^{2} = cos2x}\)
\(\displaystyle{ sin^{2}x+2sinxcosx+cos^{2}x=cos2x}\)
\(\displaystyle{ 1+2sinxcosx=cos^{2}x-sin^{2}x}\)
\(\displaystyle{ 1+2sinxcosx=1-sin^{2}x-sin^{2}x}\)
\(\displaystyle{ 1+2sinxcosx=1-2sin^{2}x}\)
\(\displaystyle{ 2sinxcosx+2sin^{2}x=0}\)
\(\displaystyle{ 2sinx(cosx+sinx)=0}\)

\(\displaystyle{ 2sinx=0}\) lub \(\displaystyle{ cosx+sinx=0}\)

Dalej już łatwo

Kapol
Użytkownik
Użytkownik
Posty: 133
Rejestracja: 1 gru 2007, o 20:02
Płeć: Mężczyzna
Lokalizacja: TM
Podziękował: 22 razy
Pomógł: 15 razy

Równania trygonometryczne

Post autor: Kapol » 30 lis 2008, o 02:36

c)
\(\displaystyle{ \cos ^{4}x + \sin ^{4}x=\cos4x}\)
\(\displaystyle{ (\cos ^{2}x + \sin ^{2}x)^{2}-2\sin^{2}x\cos^{2}x=\cos4x \slash 2}\)
\(\displaystyle{ 2 - 4\sin^{2}x\cos^{2}x=2\cos4x}\)
\(\displaystyle{ 2 - (2\sin x\cos x)^{2}=2-4\sin^{2}2x}\)
\(\displaystyle{ -\sin^{2}2x=-4\sin^{2}2x}\)
\(\displaystyle{ \sin^{2}2x=0}\)
\(\displaystyle{ x= \frac{k\pi}{2} , k C}\)

[ Dodano: 30 Listopada 2008, 02:42 ]
b)
\(\displaystyle{ (\cos^{2}x-\sin^{2}x)(cos^{2}x+sin^{2}x)=\sin4x}\)
\(\displaystyle{ \cos^{2}x-\sin^{2}x=\sin4x}\)
\(\displaystyle{ \cos 2x=\sin4x}\)
\(\displaystyle{ \cos 2x=2\sin 2x\cos 2x}\)
\(\displaystyle{ \cos 2x(sin 2x - \frac{1}{2}) =0}\)
\(\displaystyle{ \cos 2x=0 \sin 2x= \frac{1}{2}}\)
\(\displaystyle{ x=TAK\ JAK\ W\ ODPOWIEDZIACH}\)

[ Dodano: 30 Listopada 2008, 02:45 ]
W pozostałych tak samo się robi

Z_i_o_M_e_K
Użytkownik
Użytkownik
Posty: 119
Rejestracja: 16 paź 2008, o 19:26
Płeć: Mężczyzna
Lokalizacja: TM
Podziękował: 46 razy

Równania trygonometryczne

Post autor: Z_i_o_M_e_K » 30 lis 2008, o 08:56

Dzięki Kapol ale juz to rozwiązałem:) myśle teraz nad następnym

ODPOWIEDZ