ważne zadanie maturalne

Dział przeznaczony przede wszystkim dla licealistów. Róznica i iloraz ciągu. Suma ciągu arytemtycznego oraz geometrycznego.
irracjonalistka
Użytkownik
Użytkownik
Posty: 154
Rejestracja: 27 lis 2008, o 15:17
Płeć: Kobieta
Lokalizacja: Kraków
Podziękował: 4 razy

ważne zadanie maturalne

Post autor: irracjonalistka » 27 lis 2008, o 17:05

dany jest ciąg o wyrazie ogólnym \(\displaystyle{ a_{n}}\) = \(\displaystyle{ \frac{2n ^{2} -3n+1}{2n-1}}\)
a)uzasadnij, że wszystkie wyrazy ciągu są liczbami naturalnymi
b)różnica sześcianów dwóch kolejnych wyrazów ciągu wynosi (-1261). Wyznacz te wyrazy.



Byłabym bardzo wdzięczna:)

arecek
Użytkownik
Użytkownik
Posty: 283
Rejestracja: 26 sty 2007, o 22:11
Płeć: Mężczyzna
Podziękował: 4 razy
Pomógł: 93 razy

ważne zadanie maturalne

Post autor: arecek » 27 lis 2008, o 17:37

a)
\(\displaystyle{ a_{n} = \frac{2n^{2} -3n + 1}{2n - 1}}\)

\(\displaystyle{ a_{n} = \frac{2n^{2} -3n + 1}{2n - 1}}\)

\(\displaystyle{ a_{n} = \frac{2n^{2} - n - 2n + 1}{2n - 1}}\)

\(\displaystyle{ a_{n} = \frac{n(2n - 1) - 2n + 1}{2n - 1}}\) // dla czytelniejszego zapisu : k=2n-1

\(\displaystyle{ a_{n} = \frac{nk - k}{k}}\)

\(\displaystyle{ a_{n} = \frac{(n-1)k}{k}}\)

\(\displaystyle{ a_{n} = n - 1}\)

b)


\(\displaystyle{ n^{3} - (n+1)^{3} = -1261}\)

\(\displaystyle{ n^{3} - (n^{2} + 1 + 2n)(n+1) = -1261}\)

\(\displaystyle{ n^{3} - (n^{3} + n + 2n^{2}+n^{2} + 1 + 2n) = -1261}\)

\(\displaystyle{ n^{3} - n^{3} - n - 2n^{2}-n^{2} - 1 - 2n = -1261}\)

\(\displaystyle{ -3n^{2} - 1 - 3n = -1261}\)

\(\displaystyle{ 3n^{2} + 3n - 1260 = 0}\)

\(\displaystyle{ n^{2} + n - 420 = 0}\)

\(\displaystyle{ n = 20}\)

irracjonalistka
Użytkownik
Użytkownik
Posty: 154
Rejestracja: 27 lis 2008, o 15:17
Płeć: Kobieta
Lokalizacja: Kraków
Podziękował: 4 razy

ważne zadanie maturalne

Post autor: irracjonalistka » 27 lis 2008, o 17:50

oooo superrr:) dziękuję

do tego co w podpunkcie a) doszłam w jakimś innym podpunkcie ale nie zdawałam sobie sprawy że może to byc udowodnienie:)

a co do podpunktu b) to dzięki Tobie okazał się być trywialnie prostym...
a ja kombinowałam jak koń pod górę:D

DZIĘKI!!

ODPOWIEDZ