oblicz granice

Wyznaczanie granic funkcji. Ciągłość w punkcie i ciągłość jednostajna na przedziale. Reguła de l'Hospitala.
Awatar użytkownika
fanch
Użytkownik
Użytkownik
Posty: 524
Rejestracja: 14 paź 2006, o 16:56
Płeć: Mężczyzna
Lokalizacja: z Polski
Podziękował: 36 razy
Pomógł: 82 razy

oblicz granice

Post autor: fanch » 26 lis 2008, o 22:59

\(\displaystyle{ \lim_{x\to\ 0} \frac{1-cosx}{xln(1+sinx)}}\)

nie hospitalem.

Awatar użytkownika
Lorek
Gość Specjalny
Gość Specjalny
Posty: 7149
Rejestracja: 2 sty 2006, o 22:17
Płeć: Mężczyzna
Lokalizacja: Ruda Śląska
Podziękował: 1 raz
Pomógł: 1322 razy

oblicz granice

Post autor: Lorek » 26 lis 2008, o 23:37

\(\displaystyle{ \frac{1-\cos x}{x\ln(1+\sin x)}=\frac{\sin x}{\ln (1+\sin x)}\cdot \frac{1-\cos x}{x\sin x}=\frac{\sin x}{\ln(1+\sin x)}\cdot \frac{\sin^2 x}{x\sin x}\cdot \frac{1}{1+\cos x}\to 1\cdot 1\cdot \frac{1}{2}}\)

Awatar użytkownika
fanch
Użytkownik
Użytkownik
Posty: 524
Rejestracja: 14 paź 2006, o 16:56
Płeć: Mężczyzna
Lokalizacja: z Polski
Podziękował: 36 razy
Pomógł: 82 razy

oblicz granice

Post autor: fanch » 27 lis 2008, o 00:12

chyba cos nie tak bo \(\displaystyle{ \frac{sin^2x}{xsinx} * \frac{1}{1+cosx} \frac{1-cosx}{xsin}}\)

Awatar użytkownika
Lorek
Gość Specjalny
Gość Specjalny
Posty: 7149
Rejestracja: 2 sty 2006, o 22:17
Płeć: Mężczyzna
Lokalizacja: Ruda Śląska
Podziękował: 1 raz
Pomógł: 1322 razy

oblicz granice

Post autor: Lorek » 27 lis 2008, o 11:26

No pewnie, że nierówne, w końcu nie jest prawdą, że
\(\displaystyle{ \sin^2x=1-\cos^2x= (1-\cos x)(1+\cos x)}\)

ODPOWIEDZ