Reszta z dzielenia wielomianu

Własności wielomianów; pierwiastki, współczynniki. Dzielenie wielomianów. Wzory Viete'a. RÓWNANIA I NIERÓWNOŚCI wielomianowe (wyższych stopni). Rozkład na czynniki.
dziczka
Użytkownik
Użytkownik
Posty: 117
Rejestracja: 14 lip 2008, o 09:31
Płeć: Kobieta
Lokalizacja: Białystok
Podziękował: 82 razy

Reszta z dzielenia wielomianu

Post autor: dziczka » 25 lis 2008, o 22:54

Reszta z dzielenia wielomianu \(\displaystyle{ x^3+px^2-x+q}\) przez trójmian \(\displaystyle{ (x+2)^2}\) wynosi \(\displaystyle{ 1-x}\).
Wyznacz pierwiastki wielomianu.

Awatar użytkownika
sea_of_tears
Użytkownik
Użytkownik
Posty: 1641
Rejestracja: 2 lis 2007, o 20:13
Płeć: Kobieta
Lokalizacja: Śląsk
Podziękował: 30 razy
Pomógł: 548 razy

Reszta z dzielenia wielomianu

Post autor: sea_of_tears » 25 lis 2008, o 23:07

wystarczy ten wielomian zapisać jako :
\(\displaystyle{ (x+2)^2\cdot (x+a) + (1-x)= \newline
(x^2+4x+4)(x+a) + 1-x=\newline
x^3+4x^2+4x+ax^2+4ax+4a+1-x=\newline
x^3+x^2(4+a)+x(3+4a)+(4a+1)}\)

teraz porównujemy go z wielomianiem w początkowe formie
\(\displaystyle{ 4+a=p\newline
3+4a=-1 \newline
4a+1=q\newline\newline

3+4a=-1\newline
4a=-4\newline
a=-1\newline
\newline
4+a=p\newline
4-1=p
\newline
p=3
\newline\newline
4a+1=q\newline
-4+1=q\newline
q=-3}\)

zatem nasz wielomian na postać
\(\displaystyle{ x^3+3x^2-x-3=\newline
x^2(x-3)-(x-3)=(x^2-1)(x-3)=(x-1)(x+1)(x-3)\newline
x=1, x=-1, x=3}\)

Barol
Użytkownik
Użytkownik
Posty: 41
Rejestracja: 25 lis 2009, o 16:37
Płeć: Mężczyzna
Lokalizacja: Czersk
Podziękował: 1 raz

Reszta z dzielenia wielomianu

Post autor: Barol » 22 kwie 2010, o 17:24

Trzecie rozwiązanie to chyba x=-3

ODPOWIEDZ