Rozwinięcie e^x w szereg Fouriera
: 16 lis 2008, o 19:19
DObrze wyliczylem te wspolczynniki?
\(\displaystyle{ a_{0}=\frac{-e^{\pi}+e^{-\pi}}{2\pi}}\)
\(\displaystyle{ a_{n}=\frac{(-1)^{n+1}}{\pi(n+1)}(e^{\pi}-e^{-\pi})}\)
\(\displaystyle{ b_{n}=\frac{n(-1)^{n+2}}{\pi(n+1)}(e^{\pi}-e^{-\pi})}\)
\(\displaystyle{ a_{0}=\frac{-e^{\pi}+e^{-\pi}}{2\pi}}\)
\(\displaystyle{ a_{n}=\frac{(-1)^{n+1}}{\pi(n+1)}(e^{\pi}-e^{-\pi})}\)
\(\displaystyle{ b_{n}=\frac{n(-1)^{n+2}}{\pi(n+1)}(e^{\pi}-e^{-\pi})}\)