Strona 1 z 1

Zbiór wszystkich zdarzeń elementarnych a ciało zdarzeń

: 2 paź 2008, o 20:49
autor: BioZ
Witajcie...
Może ktoś mi rozjaśnić, jaka jest różnica między przestrzenią zdarzeń elementarnych(V), a ciałem zdarzeń(F)? Czy chodzi po prostu o to, że przestrzeń zdarzeń elementarnych dla jakiegoś doświadczenia może zawierać jakiekolwiek elementy, a ciało musi spełniać określone warunki? Wtedy doświadczenia losowe dotyczą F czy V(jak by wynikało ze wzorów)?
Nie pytam więcej żeby czegoś nie pokręcić, do tej pory w liceum miałem tylko pojęcie V(omega), ciała/algebry F nie, i nie wiem jakie to ma zastosowanie i w ogóle ocb...

Pozdrawiam i proszę o w miarę szybką odpowiedź;)...

Zbiór wszystkich zdarzeń elementarnych a ciało zdarzeń

: 3 paź 2008, o 00:01
autor: marcin_p321
Tobie chyba chodzi o \(\displaystyle{ \sigma}\)-ciało przestrzeni probabilistycznej. Warto najpierw zapoznać się z teorią miary.

Zachęcam do lektury:


sigma-ciało musi spełniać pewne warunki. Co trzeba znajdziesz na:


Przydaje się ta cała teoria, kiedy chcesz wyznaczyć prawdopodobieństwo zdarzenia na zbiorze niedyskretnym, np. jakie jest prawdopodobieństwo, że na odcinku [0;1] wylosujesz x>1/2. W tym przypadku (po cichu) wyznaczasz \(\displaystyle{ \frac{\mu(\frac{1}{2};1]}{\mu{[0;1]}}}\). Prawdopodobieństwo zdarzenia równa się mierze tego zdarzenia określonej na przestrzeni probabilistycznej.

Pozdrawiam