Udowodnij własność
: 31 maja 2008, o 18:30
Udowodnij własność rozkładu prawdopodobieństwa:
jeżeli \(\displaystyle{ A_{n}}\) , n=1,2,.... jest wstępującym ciągniem zdarzeń, to znaczy \(\displaystyle{ A_{n} A_{n+1}}\), to
\(\displaystyle{ P ( \bigcup_{n=1}^{\infty} A_{n}) = \lim_{n \to } P(A_{n})}\)
jeżeli \(\displaystyle{ A_{n}}\) , n=1,2,.... jest wstępującym ciągniem zdarzeń, to znaczy \(\displaystyle{ A_{n} A_{n+1}}\), to
\(\displaystyle{ P ( \bigcup_{n=1}^{\infty} A_{n}) = \lim_{n \to } P(A_{n})}\)