Strona 1 z 1

Własności prawdopodobieństwa

: 11 maja 2008, o 14:05
autor: Xfly
1. Udowodnij, że jeśli \(\displaystyle{ P(A)=0,67}\) i \(\displaystyle{ P(B)=0,83}\), to \(\displaystyle{ P(A \cap B) qslant 0,5}\).

2. Jednakowo prawdopodobne zdarzenia \(\displaystyle{ A}\) i \(\displaystyle{ B}\) są niezależne. Prawdopodobieństwo zajścia co najmniej jednego z nich jest równe \(\displaystyle{ 0,64}\). Oblicz prawdopodobieństwo zdarzenia \(\displaystyle{ A \cup B}\)

3. Udowodnij, że jeśli zdarzenia \(\displaystyle{ A}\) i \(\displaystyle{ B}\) są podzbiorami pewnego zbioru zdarzeń elementarnych i \(\displaystyle{ P(B)}\) jest większe od \(\displaystyle{ 0}\) to \(\displaystyle{ P(A|B)+P(A'|B)=1}\).

Własności prawdopodobieństwa

: 11 maja 2008, o 16:14
autor: Viathor
\(\displaystyle{ P(A \cup B)=P(A)+P(B)-P(A \cap B)}\)
\(\displaystyle{ P(A \cup B) qslant 1}\) (zawsze, gdyż \(\displaystyle{ \overline{\overline{\Omega}}=1}\))
\(\displaystyle{ P(A \cap B) qslant 1,5-1}\)
\(\displaystyle{ P(A \cap B) qslant 0,5}\)

2. https://matematyka.pl/46866.htm