Strona 1 z 1

Liczba pierwiastków równania z parametrem

: 3 kwie 2008, o 19:56
autor: MakCis
Oblicz liczbę pierwiastków równania \(\displaystyle{ |x^2 - 4| - 6x = m}\) w zależności od parametru m

Liczba pierwiastków równania z parametrem

: 3 kwie 2008, o 20:43
autor: arpa007
opuszczasz wartosc bezwzgledna:
\(\displaystyle{ \begin{cases} x^2-4-6x-m=0 \ dla \ x \in (- \infty; -2> \cup 0 \Rightarrow m> -13}\)
1 pierwiastki, gdy \(\displaystyle{ \Delta =0 m= -13}\)
0 pierwiastki, gdy \(\displaystyle{ \Delta m< -13}\)

2 trojmian juz sam zrobisz i puzniej sumujesz rozwiazania...

Liczba pierwiastków równania z parametrem

: 3 kwie 2008, o 23:58
autor: mcsQueeb
albo mozesz narysowac ta funkcje ktora podal Arpa007 z tym ze "m" przerzucic na prawa strone i odczytaj z wykresu

Liczba pierwiastków równania z parametrem

: 4 kwie 2008, o 23:26
autor: arpa007
wlasnie sie nie da:P bo ten wykres bedzie mial te same wlasnosci co wykres ktory ci wyjdzie(mi wyszedl) ale on ma na lewym luku czesc krzywej :/ tak trudne do zrozumienia ale tak mi programosik narysowal

Liczba pierwiastków równania z parametrem

: 5 kwie 2008, o 02:01
autor: JankoS
MakCis pisze:Oblicz liczbę pierwiastków równania \(\displaystyle{ |x^2 - 4| - 6x = m}\) w zależności od parametru m
Znowu jak jaka hiena, wykorzystuję wyniki innych (tym razem Kolegi arpa007), żeby uprościć rozwiązanie:
Dla \(\displaystyle{ (*)m \leqslant -2 \vee 2 \leqslant m}\) lewa strona równania ma postać
\(\displaystyle{ l(x)=x ^{2}-6x-4 \ ma \ minimum \ równe \ l(-\frac{b}{2a})=l(3)=-13.}\). Stąd i z (*) dla m=-13 jest jedno rozwiązanie dla \(\displaystyle{ m \in (-13,-2>\cup )}\) - dwa rozwiązania.
To samo z drugim członem alternatywy i na koniec suma.

Liczba pierwiastków równania z parametrem

: 5 kwie 2008, o 11:48
autor: arpa007
tez moze tak byc, ale wydaje mi sie ze bardziej uniwersalne, latwiejsze jest rozwiazanie moje, bo tu nie ma gdzie sie kopsnac