Strona 1 z 1
Oblicz pole trapezu
: 1 mar 2008, o 07:29
autor: AgnieszkaP
Pola trójkątów, których podstawami są podstawy trapezu, a wspólnym wierzchołkiem punkt przecięcia przekątnych trapezu, są równe \(\displaystyle{ S _{1}}\) i \(\displaystyle{ S _{2}}\). Oblicz pole trapezu.
Oblicz pole trapezu
: 1 mar 2008, o 09:18
autor: Dynn
Może tak:
Oznaczę:
\(\displaystyle{ a_1}\) - podstawa trójkąta \(\displaystyle{ S_1}\)
\(\displaystyle{ a_2}\) - podstawa trójkąta \(\displaystyle{ S_2}\)
\(\displaystyle{ h_1}\) - wysokość trójkąta \(\displaystyle{ S_1}\)
\(\displaystyle{ h_2}\) - wysokość trójkąta \(\displaystyle{ S_2}\)
\(\displaystyle{ S_1 = \frac{a_1h_1}{2}}\)
\(\displaystyle{ S_2 = \frac{a_2h_2}{2}}\)
Trójkąty \(\displaystyle{ S_1}\) i \(\displaystyle{ S_2}\) są podobne.
\(\displaystyle{ \frac{a_1}{h_1}=\frac{a_2}{h_2}}\)
Zatem stosunek ich pól jest proporcjonalny do stosunku kwadratów ich wysokości:
\(\displaystyle{ \frac{h_1^{2}}{h_2^{2}}=\frac{S_1}{S_2}}\)
Pole szukanego trapezu wynosi:
\(\displaystyle{ S_T = \frac{(a_1+a_2)(h_1+h_2)}{2}}\)
\(\displaystyle{ 2S_T = a_1(h_1+h_2)+a_2(h_1+h_2)}\)
\(\displaystyle{ 2S_T = S_1\frac{(h_1+h_2)}{h_1}+S_2\frac{(h_1+h_2)}{h_2}}\)
\(\displaystyle{ 2S_T = S_1(1+\sqrt{\frac{S_2}{S_1}})+S_2(1+\sqrt{\frac{S_1}{S_2}})}\)
\(\displaystyle{ 2S_T = S_1+S_1\sqrt{\frac{S_2}{S_1}}+S_2+S_2\sqrt{\frac{S_1}{S_2}}}\)
\(\displaystyle{ 2S_T = S_1+\sqrt{S_1S_2}+S_2+\sqrt{S_1S_2}}\)
\(\displaystyle{ S_T = \frac{S_1+2\sqrt{S_1S_2}+S_2}{2}}\)
Oblicz pole trapezu
: 1 mar 2008, o 17:17
autor: AgnieszkaP
Nie rozumiem tylko tego co wydarzyło się między trzecią a drugą linijką od końca?:) ale dzięki wielkie
Oblicz pole trapezu
: 1 mar 2008, o 20:59
autor: Dynn
\(\displaystyle{ 2S_T = S_1+S_1\sqrt{\frac{S_2}{S_1}}+S_2+S_2\sqrt{\frac{S_1}{S_2}}}\)
\(\displaystyle{ 2S_T = S_1+\sqrt{S_1^{2}}\sqrt{\frac{S_2}{S_1}}+S_2+\sqrt{S_2^{2}}\sqrt{\frac{S_1}{S_2}}}\)
\(\displaystyle{ 2S_T = S_1+\sqrt{\frac{S_2S_1^{2}}{S_1}}+S_2+\sqrt{\frac{S_2^{2}S_1}{S_2}}}\)
\(\displaystyle{ 2S_T = S_1+\sqrt{S_1S_2}+S_2+\sqrt{S_1S_2}}\)
Oblicz pole trapezu
: 22 mar 2008, o 16:32
autor: marcepan
wszystkie jest super ale tam jest chyba błąd z dwójką
bo powinien wyjść wynik nie dzielony przez 2.
Oblicz pole trapezu
: 22 mar 2008, o 17:48
autor: Dynn
Jasne, dzięki jaki wstyd... powinno być:
\(\displaystyle{ S_T = \frac{(a_1+a_2)(h_1+h_2)}{2}}\)
\(\displaystyle{ 2S_T = a_1(h_1+h_2)+a_2(h_1+h_2)}\)
\(\displaystyle{ 2S_T = a_1h_1\frac{(h_1+h_2)}{h_1}+a_2h_2\frac{(h_1+h_2)}{h_2}}\)
\(\displaystyle{ 2S_T = 2S_1\frac{(h_1+h_2)}{h_1}+2S_2\frac{(h_1+h_2)}{h_2}}\)
\(\displaystyle{ S_T = S_1(1+\sqrt{\frac{S_2}{S_1}})+S_2(1+\sqrt{\frac{S_1}{S_2}})}\)
\(\displaystyle{ S_T = S_1+S_1\sqrt{\frac{S_2}{S_1}}+S_2+S_2\sqrt{\frac{S_1}{S_2}}}\)
\(\displaystyle{ S_T = S_1+\sqrt{S_1S_2}+S_2+\sqrt{S_1S_2}}\)
\(\displaystyle{ S_T = S_1+2\sqrt{S_1S_2}+S_2}\)
zmiana pomiędzy 2, a 4 linijką.