Strona 1 z 1

Korzystając z definicji Heinego i Cauchy'ego........

: 26 lut 2008, o 19:11
autor: karlkar
Korzystając z definicji Heinego i Cauchy'ego pokazać że:

\(\displaystyle{ \lim_{x\to 0} x\sin\frac{1}{x} = 0}\)

Korzystając z definicji Heinego i Cauchy'ego........

: 1 mar 2008, o 19:45
autor: dd0_0bb
ja Ci moge powiedziec jak to zrobic tylko niew iem czy to bedzie to co chcesz:) mianowiscie porównujesz sin1/x ze jest wieksze równe -1 , mniejsze równe 1 poxniej mnożysz przez x obie strony i jak x do zera to masz zero ale to jest bardziej z kryt o 3 ciagach

[ Dodano: 1 Marca 2008, 19:47 ]
albo z def zb szeregu jezeli szereg an jest zb to granica przy x do zera z an jest zero.