studnia i 2 patyki

Sześciany. Wielościany. Kule. Inne bryły. Zadania i twierdzenia z nimi związane. Geometria rzutowa w przestrzeni.
Grzesiek
Użytkownik
Użytkownik
Posty: 2
Rejestracja: 17 sie 2004, o 22:13

studnia i 2 patyki

Post autor: Grzesiek » 17 sie 2004, o 22:23

Witam,
z matematyki zawsze byłem cienki, ale mam nadzieję, że trafiłem w odpowiedzi dział z moim pytaniem...

Ponad 20 lat temu, w pewnej szkole nauczyciel zadał zadanie domowe (nieobowiązkowe), kto rozwiązał dostał 5. Sam nie wiem, dlaczego to zadanie tak mi w głowie utkwiło. Niedawno opowiedziałem o tym zadaniu znajomemu, który uważa się za "bardzo dobrego" z matematyki. Na początku stwierdził: banalne, po godzinie zaczął się denerwować, po kilku dniach powiedział, że za mało danych. Sam nie wiem, może faktycznie o czymś zapomniałem - minęło w końcu ponad 20 lat...

Do studni wrzucono 2 patyki, jeden miał 3 metry, drugi 2 metry. Patyki upadły tak, że końcami dotykały miejsca styku dna i ścianek studni i się skrzyżowały. Od miejsca skrzyżowania patyków do dna studni odległość wynosiła 1 metr. Jaka jest średnica studni ?

Rysunek bardziej byłby tu pomocny, ale mam nadzieję, że w miarę zrozumiale napisałem.

Pozdrawiam Grzesiek
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
Arek
Gość Specjalny
Gość Specjalny
Posty: 1729
Rejestracja: 9 sie 2004, o 19:04
Płeć: Mężczyzna
Lokalizacja: Koszalin
Podziękował: 2 razy
Pomógł: 12 razy

studnia i 2 patyki

Post autor: Arek » 18 sie 2004, o 17:38

To się da zrobić...

Niech ABCD będzie czworąkątem, gdzie: AC=3, BD=2, kąty BCD i CDA są proste - bo zakładam, że studnia jest kształty walca. Proszę zauwazyć, że istnieje taka płaszczyzna, że leżą w niej oba patyki. Oczywiście C i D to punkty styku dna ze ścianą, a A i B to dwa pozostałe końce patyków (dobrze, gdyby to narysowac). Niech E będzie punktem przecięcia tych patyków. Niech F będzie prostokątnym rzutem E na odcinek CD, czyli innymi słowy - EF będzie wyskością trójkąta CDE. Niech CF=a, DF=b. Zgodnie z twierdzeniem Talesa: EF/AD=a/b, a EF/BC=b/a. Jednak to oznacza, że EF/AD=BC/EF, a skoro EF=1, to 1/AD=BC. Niech BC=c.

Z twierdzenia Pitagorasa mamy: (a+b)^2+c^2=9, (a+b)^2+1/(c^2)=4. To oznacza, że 9-c^2=4-1/(c^2), czyli: 5=c^2+1/(c^2)

Jeżeli rozwiązać to równanie, dostaniemy, że c^2=(5+sqrt(21))/2. Zatem skoro a+b to średnica studni, to a+b=sqrt(9-(5+sqrt(21))/2).

Pozdrawiam
Ostatnio zmieniony 18 sie 2004, o 21:49 przez Arek, łącznie zmieniany 1 raz.

Yavien
Gość Specjalny
Gość Specjalny
Posty: 800
Rejestracja: 21 cze 2004, o 22:20
Płeć: Kobieta
Lokalizacja: W-U

studnia i 2 patyki

Post autor: Yavien » 18 sie 2004, o 17:57

Arek pisze:Zgodnie z twierdzeniem Talesa: CE/AD=a/b, a CE/BC=b/a.
Do jakich trójkatów podobnych stosujesz to twierdzenie, cos mi sie nie zgadza. Wczoraj wieczorem probowalam rozwiazywac, nie chcialo mi sie, bo pozno na forum zajrzalam, ale konstrukcyjnie sie da skonstruowac, wiec i policzyc sie da (na pewno wlasnie trzeba odpowiednio zastosowac tw. Talesa, a potem Pitagorasa). Danych wydaje mi sie byc wystarczajaco...

Grzesiek
Użytkownik
Użytkownik
Posty: 2
Rejestracja: 17 sie 2004, o 22:13

studnia i 2 patyki

Post autor: Grzesiek » 18 sie 2004, o 18:59

Witam ponownie,
Cieszę się, że kogoś zainteresowałem tym zadaniem.
Dodam tylko tyle, że nauczyciel, który je zadał był kolekcjonerem, ale nietypowym - "zbierał" rozwiązania tego zadania, i jak twierdził miał ich kilka, czy kilkanaście, niestety nie pamiętam dokładnie.

a tu RYSUNECZEK do w/w zadanka

Pozdrawiam
Grzesiek

Awatar użytkownika
Arek
Gość Specjalny
Gość Specjalny
Posty: 1729
Rejestracja: 9 sie 2004, o 19:04
Płeć: Mężczyzna
Lokalizacja: Koszalin
Podziękował: 2 razy
Pomógł: 12 razy

studnia i 2 patyki

Post autor: Arek » 18 sie 2004, o 21:48

Ależ ja głupi...

/ach głupi wy, głupi.../ - że zacytuję Adama...

Tak, ale poprawiam: oczywiście nie CE, tylko EF, wszędzie trzeba CE wstawić!

Ale poza tym? ... Chyba już dobrze...

Pozdrawiam

Gregsky
Gość Specjalny
Gość Specjalny
Posty: 199
Rejestracja: 18 sie 2004, o 15:38
Płeć: Mężczyzna
Lokalizacja: KRK
Pomógł: 1 raz

studnia i 2 patyki

Post autor: Gregsky » 19 sie 2004, o 21:31

ja doszedlem do troche innego wyniku.
uzylem innych oznaczen.
oznaczam d-srednica studni przy podstawie i x-odcinek łączący punkt oparcia tyczki 2m o dno z punktem opuszczenia wysokosci 1m.
korzystając z tw Talesa i Pitagorasa
x/1 = d/(2^2 - d^2)
(d-x)/1 = d/(3^2 - d^2)
wyciągając x z pierwszego i podstawiając do drugiego i po przeksztalceniach otrzymujemy:
9-d^2 = (4-d^2)(3-d^2)

Yavien
Gość Specjalny
Gość Specjalny
Posty: 800
Rejestracja: 21 cze 2004, o 22:20
Płeć: Kobieta
Lokalizacja: W-U

studnia i 2 patyki

Post autor: Yavien » 20 sie 2004, o 00:12

Arek sie pomylil jeszcze raz w proporcjach:
Arek pisze:Niech CF=a, DF=b. Zgodnie z twierdzeniem Talesa: EF/AD=a/b, a EF/BC=b/a.
Te proporcje powinny byc nastepujace:
EF/AD = CF/CD = a/(a+b), a EF/BC = DF/CD = b/(a+b).
Przy pisaniu proporcji bardzo ulatwia porzadne zapisanie trojkatow podobnych, wtedy rzadziej sie myle "co do czego"
Ja doszlam do tych samych wynikow co gregsky (zarejestrowal sie no no ). Metoda podobna.

Awatar użytkownika
Arek
Gość Specjalny
Gość Specjalny
Posty: 1729
Rejestracja: 9 sie 2004, o 19:04
Płeć: Mężczyzna
Lokalizacja: Koszalin
Podziękował: 2 razy
Pomógł: 12 razy

studnia i 2 patyki

Post autor: Arek » 20 sie 2004, o 09:38

Ech....
Tak to jest jak się robi geometrię bez rysunków...
No nic, ale cieszę się, że wyszło

Wojciech Z
Użytkownik
Użytkownik
Posty: 4
Rejestracja: 19 lis 2006, o 13:24
Płeć: Mężczyzna
Lokalizacja: Wrocław

studnia i 2 patyki

Post autor: Wojciech Z » 19 lis 2006, o 13:26

Mam przykrą wiadomość ! Nikt nie zrobił poprawnie zadania z patykami w studni! Nikt nie podał prawidłowego równania i wyniku. Próbujcie dalej !!!

florek177
Użytkownik
Użytkownik
Posty: 3015
Rejestracja: 23 mar 2005, o 10:26
Płeć: Mężczyzna
Lokalizacja: Gdynia
Podziękował: 1 raz
Pomógł: 322 razy

studnia i 2 patyki

Post autor: florek177 » 19 lis 2006, o 17:44

http://groups.google.com/group/pl.sci.m ... 77c72184ae?


lub rozwiązać równanie:

\(\displaystyle{ \frac{1}{\sqrt{9-x^{2}}}+\frac{1}{\sqrt{4-x^{2}}}-1=0}\)

co nie będzie proste.

Awatar użytkownika
Calasilyar
Gość Specjalny
Gość Specjalny
Posty: 2656
Rejestracja: 2 maja 2006, o 21:42
Płeć: Mężczyzna
Lokalizacja: Wrocław/Sieradz
Podziękował: 29 razy
Pomógł: 410 razy

studnia i 2 patyki

Post autor: Calasilyar » 19 lis 2006, o 19:20

też do tego doszedłem, ale jak zobaczyłem w Derive'u te rozwiązania na trzy linijki to aż się odechciało patrzec, a co dopiero przeanalizowac :lol:

Wojciech Z
Użytkownik
Użytkownik
Posty: 4
Rejestracja: 19 lis 2006, o 13:24
Płeć: Mężczyzna
Lokalizacja: Wrocław

studnia i 2 patyki

Post autor: Wojciech Z » 19 lis 2006, o 21:13

Dla ciekawych podaję trochę pierwszych cyfr wyniku: 1,23118572377867... m


Longines
Użytkownik
Użytkownik
Posty: 103
Rejestracja: 11 cze 2009, o 22:05
Płeć: Mężczyzna
Lokalizacja: Siedlce
Podziękował: 6 razy
Pomógł: 4 razy

studnia i 2 patyki

Post autor: Longines » 22 cze 2009, o 10:33

Przypadkowo natrafiłem na ten temat. Wynik podany przez "Wojciech Z" jest nieprawidłowy. Dziwne, że przez ponad 2 lata nikt nie zwrócił na to uwagi.

Wojciech Z
Użytkownik
Użytkownik
Posty: 4
Rejestracja: 19 lis 2006, o 13:24
Płeć: Mężczyzna
Lokalizacja: Wrocław

studnia i 2 patyki

Post autor: Wojciech Z » 6 mar 2012, o 23:14

Longines pisze:Przypadkowo natrafiłem na ten temat. Wynik podany przez "Wojciech Z" jest nieprawidłowy. Dziwne, że przez ponad 2 lata nikt nie zwrócił na to uwagi.
Zajrzałem tu po latach i upieram się przy swoim wyniku ! Zna ktoś lepszy ?? !

Awatar użytkownika
Inkwizytor
Użytkownik
Użytkownik
Posty: 4105
Rejestracja: 16 maja 2009, o 15:08
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 1 raz
Pomógł: 427 razy

studnia i 2 patyki

Post autor: Inkwizytor » 7 mar 2012, o 08:59

Mi wyszedł taki sam wynik jak Wojciechowi. Z uwagi na kwestie przybliżeniowe wynik jest identyczny do 4 miejsca po przecinku

Stworzyłem układ 4 równań z 4 niewiadomymi, po zredukowaniu otrzymałem pomocnicze równanie wielomianowe 4 stopnia z jednym miejscem zerowym w części dodatniej. Po podstawieniu wyniku do wzoru na średnicę otrzymałem \(\displaystyle{ 1,2311...m}\)

ODPOWIEDZ