(3 zadania) Równania z parametrem. Wzory Viete'a

Zagadnienia dot. funkcji kwadratowej. RÓWNANIA I NIERÓWNOŚCI kwadratowe i pierwiastkowe. Układy równań stopnia 2.
Gloomy_man

(3 zadania) Równania z parametrem. Wzory Viete'a

Post autor: Gloomy_man » 13 sie 2004, o 19:21

1. Dla jakich wartości parametru k rozwiązanie układu
x-y=k-1
2x-y=3-k
jest parą liczb
a) dodatnich
b) ujemnych
c) o przeciwnych znakach

2. Dla jakich wartości parametru p równanie x^2 + 2px + 4 = 0 ma dwa różne pierwiastki rzeczywiste spełniające warunek

(x_1/x_2)^2 + (x_2/x_1)^2 >= 3

Obliczyłem deltę (>0) jadnak mam kłopot z obliczeniem warunku (x_1/x_2)^2 + (x_2/x_1)^2 >= 3 (wiem, że należy skorzystać z wzorów Viete'a).

Czy ktoś mógłby rozwiązać warunek z którym mam poroblem?


3. Dla jakich wartości parametru k należących do przedziału równanie
x^2sin_k + x + cos_k = 0 ma dwa różne pierwiastki rzeczywiste, których suma odwrotności jest dodatnia?
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

event
Użytkownik
Użytkownik
Posty: 45
Rejestracja: 9 lip 2004, o 00:41

(3 zadania) Równania z parametrem. Wzory Viete'a

Post autor: event » 13 sie 2004, o 20:47

do zadania 2:
mnozysz stronami przez (x_1*x_2)^2 i dostajesz rownanie:
(x_1)^3 + (x_2)^3 = 3(x_1*x_2)^2
lewa strona to nic innego jak
(x_1 + x_2) ( (x_1)^2 - x_1*x_2 + (x_2)^2))
w drugim nawiasie wyrazenie (x_1)^2 + (x_2)^2 zastepujesz wyrazeniem
(x_1 + x_2)^2 - 2*x_1*x_2 i chyba na tym koniec

ps zadanie pierwsze jest niekompletne, w zadaniu trzecim jest x^(2sink) czy (x^2) *sink ?

Gloomy_man

(3 zadania) Równania z parametrem. Wzory Viete'a

Post autor: Gloomy_man » 15 sie 2004, o 16:35

Śpiszyłem się i stąd te błędy.

Do zadania 1

x-y=k-1
2x-y=3-k

W zadaniu trzecim jest (x^2) *sink

Dziękuję za pomoc.

Awatar użytkownika
Zlodiej
Korepetytor
Korepetytor
Posty: 1910
Rejestracja: 28 cze 2004, o 12:24
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 2 razy
Pomógł: 108 razy

(3 zadania) Równania z parametrem. Wzory Viete'a

Post autor: Zlodiej » 20 sty 2005, o 14:50

AD 3

Pierwszy warunek.
Delta musi być większa od zera aby istniały 2 różne pierwiastki rzeczywiste, dlatego:
\(\displaystyle{ 1-4\sin k\cdot \cos k>0}\)
Korzystająć ze wzoru na podójny kąt sinusa mamy:
\(\displaystyle{ \sin 2k}\)

Kolejny warunek:
\(\displaystyle{ \frac{1}{x_1}+\frac{1}{x_2}>0}\)
Sprowadzamy do współnego mianownika i mamy:
\(\displaystyle{ \frac{x_1+x_2}{x_1\cdot x_2}>0}\)

Korzystając ze wzorów Viete'a
\(\displaystyle{ x_1+x_2=\frac{-1}{\sin k}}\)
\(\displaystyle{ x_1\cdot x_2=\frac{\cos k}{\sin k}}\)

Podstawiając do wzoru i przekształcając otrzymujemy:
\(\displaystyle{ \frac{-1}{\cos k}>0}\)
\(\displaystyle{ \cos k}\)

Rogal
Gość Specjalny
Gość Specjalny
Posty: 5405
Rejestracja: 11 sty 2005, o 22:21
Płeć: Mężczyzna
Lokalizacja: a z Limanowej
Podziękował: 1 raz
Pomógł: 422 razy

(3 zadania) Równania z parametrem. Wzory Viete'a

Post autor: Rogal » 20 sty 2005, o 21:07

1) Należy rozwiązać układ równań w zależności od k, czyli podać wzór na x i na y zależny właśnie od parametru. Następnie trzeba do każdego podpunktu z osobna ułożyć układ nierówności i wyznaczyć przedziały dla k. To tak ogólnie.

ODPOWIEDZ