równania wymierne

Od funkcji homograficznych do bardziej skomplikowanych ilorazów wielomianów. Własności. RÓWNANIA I NIERÓWNOŚCI.
aga_1_5
Użytkownik
Użytkownik
Posty: 63
Rejestracja: 9 lis 2007, o 09:45
Płeć: Kobieta
Lokalizacja: Polska

równania wymierne

Post autor: aga_1_5 » 9 lis 2007, o 09:55

Mam problem z pewnymi równaniami...Czy ktoś mógłby mi pomóc? 1) \(\displaystyle{ \frac{1}{x}}\) + \(\displaystyle{ \frac{1}{x+2}}\) + \(\displaystyle{ \frac{1}{x+5}}\) + \(\displaystyle{ \frac{1}{x+7}}\) = \(\displaystyle{ \frac{1}{x+1}}\) + \(\displaystyle{ \frac{1}{x+3}}\) + \(\displaystyle{ \frac{1}{x+4}}\) + \(\displaystyle{ \frac{1}{x+6}}\) 2) \(\displaystyle{ x^{5}}\) = \(\displaystyle{ \frac{133x - 78}{133 - 78x}}\)

wb
Użytkownik
Użytkownik
Posty: 3506
Rejestracja: 20 sie 2006, o 12:58
Płeć: Mężczyzna
Lokalizacja: Brodnica

równania wymierne

Post autor: wb » 9 lis 2007, o 15:34

Może do 1. uzyj wzoru: \(\displaystyle{ \frac{1}{n}- \frac{1}{n+1}= \frac{1}{n(n+1)}}\) łącząc w pary odpowiednie składniki, których mianowniki różnią się o 1. W 2., po wymnożeniu przez mianownik i grupowaniu: \(\displaystyle{ (x-1)(x+1)(78(x^2+x+1)(x^2-x+1)-133x(x^2+1))=0 \\ x=1 x=-1 78x^4-133x^3+78x^2-133x+78=0}\) Z ostatniego z równań wychodzi jeszcze \(\displaystyle{ x= \frac{3}{2}\vee x= \frac{2}{3}}\) ale wiem to z komputera a nie własnych rachunków.

aga_1_5
Użytkownik
Użytkownik
Posty: 63
Rejestracja: 9 lis 2007, o 09:45
Płeć: Kobieta
Lokalizacja: Polska

równania wymierne

Post autor: aga_1_5 » 9 lis 2007, o 21:38

hmm... nie wiem za bardzo jak ten wzor podstawic do tego pierwszego rownania ... a z tym drugim to nie wiem... bo do tego momentu doszłam i nie wiem jak wyliczyc z tego x ....

wb
Użytkownik
Użytkownik
Posty: 3506
Rejestracja: 20 sie 2006, o 12:58
Płeć: Mężczyzna
Lokalizacja: Brodnica

równania wymierne

Post autor: wb » 10 lis 2007, o 08:30

1. \(\displaystyle{ \frac{1}{x}+ \frac{1}{x+2}+\frac{1}{x+5}+\frac{1}{x+7}=\frac{1}{x+1}+\frac{1}{x+3}+\frac{1}{x+4}+\frac{1}{x+6} \\ (\frac{1}{x}-\frac{1}{x+1})+(\frac{1}{x+2}-\frac{1}{x+3})=(\frac{1}{x+4}-\frac{1}{x+5})+(\frac{1}{x+6}-\frac{1}{x+7}) \\ \frac{1}{x(x+1)}+\frac{1}{(x+2)(x+3)}=\frac{1}{(x+4)(x+5)}+\frac{1}{(x+6)(x+7)}}\) Dalej proponowałbym przenieść jeden ze składników z lewej strony i jeden z prawej na przeciwną by uzyskać po obu stronach odejmowania (są rózne możliwości - sprawdziłbym, która daje lepsze wyniki). Następnie chyba już trzeba by było posprowadzać odzielnie prawą i lewą stronę do wspólnego mianownika. Potem, tak jak w proporcji wymnożyłbym "na krzyż". Co do pierwszego, to skoro wiesz jakie są rozwiązania (pisałem Ci) , to rozłóż otrzymany wielomian na czynniki przez dzielenie go.

aga_1_5
Użytkownik
Użytkownik
Posty: 63
Rejestracja: 9 lis 2007, o 09:45
Płeć: Kobieta
Lokalizacja: Polska

równania wymierne

Post autor: aga_1_5 » 10 lis 2007, o 09:07

a czemu zrobiłes x(x-1) i (x+2)(x+3) itd. skoro wczesniej było odejmowanie? a co do pierwszego... jakbym nie znała wyników ... co to jak wtedy mogłabym wpasc na to przez co podzielic ?

wb
Użytkownik
Użytkownik
Posty: 3506
Rejestracja: 20 sie 2006, o 12:58
Płeć: Mężczyzna
Lokalizacja: Brodnica

równania wymierne

Post autor: wb » 10 lis 2007, o 14:24

1.No właśnie zastosowałem wzór , który podałem Ci wcześniej. 2. Jak nie wiesz przez co dzielić, to należy zastosować tw. o wymiernych pierwiastkach wielomianu... Znasz ze szkoły?

aga_1_5
Użytkownik
Użytkownik
Posty: 63
Rejestracja: 9 lis 2007, o 09:45
Płeć: Kobieta
Lokalizacja: Polska

równania wymierne

Post autor: aga_1_5 » 10 lis 2007, o 17:23

znam znam ...., zrobilam to , dziękuje....tylko chcialam się zapytać jak można szybko wpaść na pomysł przez co dzielic...a w tym pierwszym to podstawilam i dalej mi nie chce wyjsc ..... znaczy jakos w koncowym etapie.... Ja robiłam sposobem takim ze wyłańczałam wspolne czynniki przed nawias...tylko ze wyszły mi dwa nawiasy i nie wiem jak z drugiego wyliczyc dla jakich x jest rowne 0 ( a pozatym ten sposob jest straszniee dlugi)

wb
Użytkownik
Użytkownik
Posty: 3506
Rejestracja: 20 sie 2006, o 12:58
Płeć: Mężczyzna
Lokalizacja: Brodnica

równania wymierne

Post autor: wb » 10 lis 2007, o 17:33

Dzieli się przez dwumian x-p , gdzie p jest pierwiastkiem znalezionym według tw. o którym pisałem. Co do tego, że długo i dużo się liczy - może jest tu jakiś trick, który to ułatwi, ale ja go nie znam.

aga_1_5
Użytkownik
Użytkownik
Posty: 63
Rejestracja: 9 lis 2007, o 09:45
Płeć: Kobieta
Lokalizacja: Polska

równania wymierne

Post autor: aga_1_5 » 10 lis 2007, o 18:12

Dziekuje....

ODPOWIEDZ