Granica ciągu

Własności ciągów i zbieżność, obliczanie granic. Twierdzenia o zbieżności.
proszek
Użytkownik
Użytkownik
Posty: 7
Rejestracja: 14 paź 2007, o 21:15
Płeć: Kobieta
Lokalizacja: a czy to ważne?

Granica ciągu

Post autor: proszek » 28 paź 2007, o 11:13

\(\displaystyle{ u_{n}=\frac{1+a+a^{2}+...+a^{n}}{1+\frac{1}{4}+\frac{1}{16}+...+\frac{1}{4^{n}}}}\)

soku11
Użytkownik
Użytkownik
Posty: 6607
Rejestracja: 16 sty 2007, o 19:42
Płeć: Mężczyzna
Podziękował: 119 razy
Pomógł: 1822 razy

Granica ciągu

Post autor: soku11 » 28 paź 2007, o 12:11

Gora:
\(\displaystyle{ 1+a+a^2+...+a^n\\
a_1=1\ \ q=a\\
S_n=\frac{1-a^n}{1-a}\\}\)


Dol:
\(\displaystyle{ 1+\frac{1}{4}+\frac{1}{16}+...+\frac{1}{4^n}\\
a_1=1\ \ q=\frac{1}{4}\\
S_n=\frac{1-\frac{1}{4^n}}{1-\frac{1}{4}}=
=\frac{4(1-\frac{1}{4^n})}{3}\\}\)


\(\displaystyle{ \lim_{n\to\infty} u_n=
\lim_{n\to\infty} \frac{ \frac{1-a^n}{1-a} }{ \frac{4(1-\frac{1}{4^n})}{3} }=
\lim_{n\to\infty} \frac{ 3(1-a^n)}{4(1-a)(1-\frac{1}{4^n})}=\left[ \frac{\infty}{4-4a} \right]=+\infty}\)


Powinno byc ok. POZDRO

Awatar użytkownika
bolo
Gość Specjalny
Gość Specjalny
Posty: 2470
Rejestracja: 2 lis 2004, o 08:28
Płeć: Mężczyzna
Lokalizacja: BW
Podziękował: 8 razy
Pomógł: 191 razy

Granica ciągu

Post autor: bolo » 28 paź 2007, o 12:41

soku11 pisze:\(\displaystyle{ \lim_{n\to\infty} \frac{ 3(1-a^n)}{4(1-a)(1-\frac{1}{4^n})}=\left[ \frac{\infty}{4-4a} \right]=+\infty}\)

Powinno byc ok. POZDRO
Powinno... Wybrałeś jeden ze szczególnych przypadków \(\displaystyle{ a}\), dla którego ta granica jest niewłaściwa. Trzeba jeszcze coś rozpatrzyć. Właściwie to należy tu określić dla jakich \(\displaystyle{ a}\) granica jest równa tyle lub tyle...
Ostatnio zmieniony 1 sty 1970, o 01:00 przez bolo, łącznie zmieniany 1 raz.

proszek
Użytkownik
Użytkownik
Posty: 7
Rejestracja: 14 paź 2007, o 21:15
Płeć: Kobieta
Lokalizacja: a czy to ważne?

Granica ciągu

Post autor: proszek » 28 paź 2007, o 12:41

ta... jest ok, ale trzeba rozwazyc przypadki dla \(\displaystyle{ |a|\geqslant 0}\) i \(\displaystyle{ |a|< 0}\)...

soku11
Użytkownik
Użytkownik
Posty: 6607
Rejestracja: 16 sty 2007, o 19:42
Płeć: Mężczyzna
Podziękował: 119 razy
Pomógł: 1822 razy

Granica ciągu

Post autor: soku11 » 28 paź 2007, o 13:03

No to chyba bedzie jakos tak:
\(\displaystyle{ \lim_{n\to\infty}u_n=\begin{cases}
+\infty\quad dla\ |a|>1\\
\frac{3}{4(1-a)} \quad dla\ a=0\\
0\quad dla\ |a|}\)
Ostatnio zmieniony 28 paź 2007, o 13:35 przez soku11, łącznie zmieniany 1 raz.

proszek
Użytkownik
Użytkownik
Posty: 7
Rejestracja: 14 paź 2007, o 21:15
Płeć: Kobieta
Lokalizacja: a czy to ważne?

Granica ciągu

Post autor: proszek » 28 paź 2007, o 13:30

mi wyszlo
\(\displaystyle{ \lim_{n\to }u_{n}=\left\{\begin{array}{l}\frac{3}{4(1-a)}, \ dla \ |a|}\)

ODPOWIEDZ