Twierdzenie sinusów + podobieństwo trójkątów.

Dział całkowicie poświęcony zagadnieniom związanymi z trójkątami. Temu co się w nie wpisuje i na nich opisuje - też...
daves16
Użytkownik
Użytkownik
Posty: 19
Rejestracja: 21 mar 2007, o 19:51
Płeć: Mężczyzna
Lokalizacja: Łomża
Podziękował: 4 razy
Pomógł: 1 raz

Twierdzenie sinusów + podobieństwo trójkątów.

Post autor: daves16 » 27 paź 2007, o 20:19

Bardzo prosiłbym o rozwiązanie lub choćby jakąś większą podpowiedź do tego zadania. Z góry dziękuję.

W trójkącie ostrokątnym ABC poprowadzono wysokości AM i CN. Pole trójkąta ABC=18, pole trójkąta MNB =2, a długość MN = \(\displaystyle{ 2\sqrt{2}}\). Oblicz promień okręgu opisanego na trójkącie ABC. (Wiem że trzeba skorzystać z twierdzenia sinusów i podobieństwa trójkątów).
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

andkom
Użytkownik
Użytkownik
Posty: 636
Rejestracja: 10 paź 2007, o 12:57
Płeć: Mężczyzna
Lokalizacja: Łódź
Pomógł: 350 razy

Twierdzenie sinusów + podobieństwo trójkątów.

Post autor: andkom » 28 paź 2007, o 09:20

Trójkąty MBN i ABC są podobne. Skala ich podobieństwa z jednej strony jest równa \(\displaystyle{ \cos\beta}\) (gdzie \(\displaystyle{ \beta:=\angle ABC}\)) a z drugiej strony wynosi \(\displaystyle{ \sqrt{\frac2{18}}=\frac13}\). Stąd \(\displaystyle{ AC=3MN=6\sqrt2}\) oraz \(\displaystyle{ \cos\beta=\frac13}\).
Szukana długość promienia wynosi (z tw. sinusów):
\(\displaystyle{ \frac{AC}{2\sin\beta}=\frac{6\sqrt2}{2\sqrt{1-\left(\frac13\right)^2}}
=\frac92}\)

daves16
Użytkownik
Użytkownik
Posty: 19
Rejestracja: 21 mar 2007, o 19:51
Płeć: Mężczyzna
Lokalizacja: Łomża
Podziękował: 4 razy
Pomógł: 1 raz

Twierdzenie sinusów + podobieństwo trójkątów.

Post autor: daves16 » 28 paź 2007, o 16:23

A jak udowodnic ze trojkaty MBN i ABC bo to chyba nie jest oczywiste, a moze sie myle? W kazdym razie prosze o odpowiedz.

andkom
Użytkownik
Użytkownik
Posty: 636
Rejestracja: 10 paź 2007, o 12:57
Płeć: Mężczyzna
Lokalizacja: Łódź
Pomógł: 350 razy

Twierdzenie sinusów + podobieństwo trójkątów.

Post autor: andkom » 28 paź 2007, o 19:58

Kąt przy wierzchołku B mają wspólny, a sąsiadujące z tym wierzchołkiem boki są proporcjonalne: \(\displaystyle{ \frac{BM}{BA}=\cos\beta=\frac{BN}{BC}}\)

daves16
Użytkownik
Użytkownik
Posty: 19
Rejestracja: 21 mar 2007, o 19:51
Płeć: Mężczyzna
Lokalizacja: Łomża
Podziękował: 4 razy
Pomógł: 1 raz

Twierdzenie sinusów + podobieństwo trójkątów.

Post autor: daves16 » 28 paź 2007, o 20:08

Wielkie dzieki.

ODPOWIEDZ