Dowód równości

Ze względu na specyfikę metody - osobny dział.
milagros111
Użytkownik
Użytkownik
Posty: 19
Rejestracja: 15 paź 2007, o 20:37
Płeć: Kobieta
Lokalizacja: Słupsk
Podziękował: 11 razy

Dowód równości

Post autor: milagros111 » 26 paź 2007, o 18:12

\(\displaystyle{ \frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \frac{1}{7 \cdot 10} + \ldots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{3n+1}}\)

L=P

i doszłam do..

\(\displaystyle{ \frac{n(n+4)+1}{(3n+1)(3n+4)}}\)


i nie wiem jak dalej zeby wyszla ta prawa strona dla n=n+1
czyli

\(\displaystyle{ \frac{n+1}{3(n+1)+1}}\)
czyli \(\displaystyle{ \frac{n+1}{3n+4}}\)

z gory dziekuje za pomoc.

Dlaczego nie umieściałą wszystkiego między jedną parą tagów 'tex' i '/tex' :?:
luka52
Ostatnio zmieniony 26 paź 2007, o 18:34 przez milagros111, łącznie zmieniany 1 raz.

tmk
Użytkownik
Użytkownik
Posty: 25
Rejestracja: 18 paź 2007, o 19:36
Płeć: Mężczyzna
Lokalizacja: Ustka
Podziękował: 1 raz
Pomógł: 8 razy

Dowód równości

Post autor: tmk » 26 paź 2007, o 19:08

zał.:
\(\displaystyle{ T(k):\ \frac{1}{1 4} + \frac{1}{4 7} + \frac{1}{7 10} + \ldots + \frac{1}{(3k-2)(3k+1)} = \frac{k}{3k+1}}\)
teza:
\(\displaystyle{ T(k+1):\ \frac{k}{3k+1}+\frac{1}{(3(k+1)-2)(3(k+1)+1)}=\frac{k+1}{3(k+1)+1}}\)
dowod:
\(\displaystyle{ \frac{k}{3k+1}+\frac{1}{(3k+1)(3k+4)}=\frac{k+1}{3k+4}\slash\cdot(3k+1)(3k+4)\\
k(3k+4)+1=(k+1)(3k+1)\\
3k^2+4k+1=3k^2+4k+1}\)

milagros111
Użytkownik
Użytkownik
Posty: 19
Rejestracja: 15 paź 2007, o 20:37
Płeć: Kobieta
Lokalizacja: Słupsk
Podziękował: 11 razy

Dowód równości

Post autor: milagros111 » 5 lis 2007, o 16:40

dziekuje:)

ODPOWIEDZ