granica ciągu zespolonego

Własności ciągów i zbieżność, obliczanie granic. Twierdzenia o zbieżności.
m1h4u
Użytkownik
Użytkownik
Posty: 9
Rejestracja: 12 mar 2006, o 13:32
Płeć: Mężczyzna
Lokalizacja: Gliwice/Skierniewice
Podziękował: 2 razy

granica ciągu zespolonego

Post autor: m1h4u » 25 paź 2007, o 14:58

mam takie 2 przykłady i nie bardzo wiem jak je ruszyć...

\(\displaystyle{ \lim_{n\to } \frac{1+2n}{1+ne^{in}}}\)

\(\displaystyle{ \lim_{n\to } (\frac{1}{1+i})^{n}}\)

pomożecie?
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
przemk20
Użytkownik
Użytkownik
Posty: 1094
Rejestracja: 6 gru 2006, o 22:47
Płeć: Mężczyzna
Lokalizacja: Olesno
Podziękował: 45 razy
Pomógł: 236 razy

granica ciągu zespolonego

Post autor: przemk20 » 25 paź 2007, o 16:20


\(\displaystyle{ \frac{1}{1+i} = \frac{1}{\sqrt{2}(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} )} \\
Re, Im (\lim_{n \to } (\cos \frac{n \pi}{4} + i \sin \frac{n \pi}{4} })) \\
\lim_{n \to }\ ( \ (\frac{1}{ \sqrt 2})^n \frac{1}{\cos \frac{n \pi}{4} + i \sin \frac{n \pi}{4} }} \ )=0}\)


Awatar użytkownika
Sir George
Użytkownik
Użytkownik
Posty: 1145
Rejestracja: 27 kwie 2006, o 10:19
Płeć: Mężczyzna
Lokalizacja: z Konopii
Podziękował: 4 razy
Pomógł: 203 razy

granica ciągu zespolonego

Post autor: Sir George » 26 paź 2007, o 14:06

Można też tak:
\(\displaystyle{ \Big|\frac1{1+i}\Big|\, =\, \frac{\sqrt{2}}{2}\, \, n+1}\)
skąd
\(\displaystyle{ \mbox{Im}\frac{1+2n}{n+1}\, =\, \mbox{Im}\frac{(1+2n)(1+ne^{-in})}{(1+ne^{in})(1+ne^{-in})}\, =\, \frac{\big(\frac1n+2\big)\sin n}{\frac1{n^2}+\frac2n\cos n+1}}\)
co niestety nie posiada granicy przy \(\displaystyle{ n\,\to\,+\infty}\)

m1h4u
Użytkownik
Użytkownik
Posty: 9
Rejestracja: 12 mar 2006, o 13:32
Płeć: Mężczyzna
Lokalizacja: Gliwice/Skierniewice
Podziękował: 2 razy

granica ciągu zespolonego

Post autor: m1h4u » 27 paź 2007, o 04:07

dzięki

ODPOWIEDZ