Postać iloczynowa wielomianów Czebyszowa
: 1 lut 2025, o 01:57
\(\displaystyle{
\Large
{
T_{n}\left( \cos{\left( \theta\right) }\right) = \cos{\left( n\theta\right) }\\
x = \cos{\left( \theta\right)}\\
\cos{\left( n\theta\right) } = 0\\
n\theta = \frac{\pi}{2}+k\pi \qquad k\in\mathbb{Z}\\
n\theta = \frac{\pi}{2}+\left( k-1\right) \pi \qquad k\in\mathbb{Z}\\
n\theta = \frac{\left(2k-1\right)}{2}\pi \qquad k\in\mathbb{Z}\\
\theta = \frac{\left(2k-1\right)\pi}{2n}\qquad k\in\mathbb{Z}\\
\cos{\left( \theta\right)} = \cos{\left(\frac{\left(2k-1\right)\pi}{2n} \right) }\qquad k\in\mathbb{Z}\\
x_{k} = \cos{\left(\frac{\left(2k-1\right)\pi}{2n} \right) } \qquad k=1,2,\ldots, n\\
T_{n}\left( x\right) = a \prod\limits_{k=1}^{n}{\left( x-\cos{\left(\frac{\left(2k-1\right)\pi}{2n} \right) }\right) } \\
T_{n}\left( 1\right) = 1\\
a \prod\limits_{k=1}^{n}{\left( 1-\cos{\left(\frac{\left(2k-1\right)\pi}{2n} \right) }\right) } = 1\\
a = \frac{1}{\prod\limits_{k=1}^{n}{\left( 1-\cos{\left(\frac{\left(2k-1\right)\pi}{2n} \right) }\right) }}\\
a = \prod\limits_{k=1}^{n}{\frac{1}{1-\cos{\left(\frac{\left(2k-1\right)\pi}{2n} \right) }}}\\
T_{n}\left( x\right) =\prod\limits_{k=1}^{n}{\frac{ x-\cos{\left(\frac{\left(2k-1\right)\pi}{2n} \right) }}{ 1-\cos{\left(\frac{\left(2k-1\right)\pi}{2n} \right) }}}
}
}\)
Teraz zadanie jest takie spróbujmy mając do dyspozycji postać iloczynową
obliczyć współczynnik wiodący wielomianów Czebyszowa dla \(\displaystyle{ n > 0}\)
(Dla biznesmenów Traczów - tak wiem że to będzie \(\displaystyle{ 2^{n-1}}\)
tylko jak ten wynik otrzymać mając do dyspozycji jedynie postać iloczynową)
Oto do czego doszedłem
\(\displaystyle{
\Large
{
\prod\limits_{k=1}^{n}{\left(1-\cos{\left(\frac{\left(2k-1\right)\pi}{2n} \right) }\right)}\\
1 = \cos^2{\left( \theta\right) }+\sin^{2}{\left( \theta\right) }\\
\cos{\left( 2\theta\right) } = \cos^2{\left( \theta\right) }-\sin^{2}{\left( \theta\right) }\\
\prod\limits_{k=1}^{n}{\left( \left(\cos^2{\left(\frac{\left(2k-1\right)\pi}{4n} \right) } + \sin^2{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }\right) -\left(\cos^2{\left(\frac{\left(2k-1\right)\pi}{4n} \right) } -\sin^2{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }\right) \right) }\\
\prod\limits_{k=1}^{n}{2\sin^2{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }}\\
=\prod\limits_{k=1}^{n}{\frac{1}{2}\cdot 4\sin^2{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }}\\
=\frac{1}{2^{n}}\prod\limits_{k=1}^{n}{4\sin^2{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }}\\
=\frac{1}{2^{n}}\prod\limits_{k=1}^{n}{2\sin{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }}\prod\limits_{k=1}^{n}{2\sin{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }}\\
=\frac{1}{2^{n}}\prod\limits_{k=1}^{n}{2\sin{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }}\prod\limits_{k=1}^{n}{2\sin{\left(\frac{\left(2\left(n-k+1\right)-1\right)\pi}{4n} \right) }}\\
=\frac{1}{2^{n}}\prod\limits_{k=1}^{n}{2\sin{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }}\prod\limits_{k=1}^{n}{2\sin{\left(\frac{\pi}{2}-\frac{\left(2k-1\right)\pi}{4n} \right) }}\\
=\frac{1}{2^{n}}\prod\limits_{k=1}^{n}{2\sin{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }}\prod\limits_{k=1}^{n}{2\cos{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }}\\
=\frac{1}{2^{n}}\prod\limits_{k=1}^{n}{2\sin{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }\cdot 2\cos{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }}\\
=\frac{1}{2^{n}}\prod\limits_{k=1}^{n}{2\cdot 2\sin{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }\cos{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }}\\
=\frac{1}{2^{n}}\prod\limits_{k=1}^{n}{2\sin{\left(\frac{\left(2k-1\right)\pi}{2n} \right) }}\\
}
}\)
Jak teraz pokazać że dla \(\displaystyle{ n>0}\)
\(\displaystyle{
\Large
{
\prod\limits_{k=1}^{n}{2\sin{\left(\frac{\left(2k-1\right)\pi}{2n} \right) }} = 2
}
}\)
\Large
{
T_{n}\left( \cos{\left( \theta\right) }\right) = \cos{\left( n\theta\right) }\\
x = \cos{\left( \theta\right)}\\
\cos{\left( n\theta\right) } = 0\\
n\theta = \frac{\pi}{2}+k\pi \qquad k\in\mathbb{Z}\\
n\theta = \frac{\pi}{2}+\left( k-1\right) \pi \qquad k\in\mathbb{Z}\\
n\theta = \frac{\left(2k-1\right)}{2}\pi \qquad k\in\mathbb{Z}\\
\theta = \frac{\left(2k-1\right)\pi}{2n}\qquad k\in\mathbb{Z}\\
\cos{\left( \theta\right)} = \cos{\left(\frac{\left(2k-1\right)\pi}{2n} \right) }\qquad k\in\mathbb{Z}\\
x_{k} = \cos{\left(\frac{\left(2k-1\right)\pi}{2n} \right) } \qquad k=1,2,\ldots, n\\
T_{n}\left( x\right) = a \prod\limits_{k=1}^{n}{\left( x-\cos{\left(\frac{\left(2k-1\right)\pi}{2n} \right) }\right) } \\
T_{n}\left( 1\right) = 1\\
a \prod\limits_{k=1}^{n}{\left( 1-\cos{\left(\frac{\left(2k-1\right)\pi}{2n} \right) }\right) } = 1\\
a = \frac{1}{\prod\limits_{k=1}^{n}{\left( 1-\cos{\left(\frac{\left(2k-1\right)\pi}{2n} \right) }\right) }}\\
a = \prod\limits_{k=1}^{n}{\frac{1}{1-\cos{\left(\frac{\left(2k-1\right)\pi}{2n} \right) }}}\\
T_{n}\left( x\right) =\prod\limits_{k=1}^{n}{\frac{ x-\cos{\left(\frac{\left(2k-1\right)\pi}{2n} \right) }}{ 1-\cos{\left(\frac{\left(2k-1\right)\pi}{2n} \right) }}}
}
}\)
Teraz zadanie jest takie spróbujmy mając do dyspozycji postać iloczynową
obliczyć współczynnik wiodący wielomianów Czebyszowa dla \(\displaystyle{ n > 0}\)
(Dla biznesmenów Traczów - tak wiem że to będzie \(\displaystyle{ 2^{n-1}}\)
tylko jak ten wynik otrzymać mając do dyspozycji jedynie postać iloczynową)
Oto do czego doszedłem
\(\displaystyle{
\Large
{
\prod\limits_{k=1}^{n}{\left(1-\cos{\left(\frac{\left(2k-1\right)\pi}{2n} \right) }\right)}\\
1 = \cos^2{\left( \theta\right) }+\sin^{2}{\left( \theta\right) }\\
\cos{\left( 2\theta\right) } = \cos^2{\left( \theta\right) }-\sin^{2}{\left( \theta\right) }\\
\prod\limits_{k=1}^{n}{\left( \left(\cos^2{\left(\frac{\left(2k-1\right)\pi}{4n} \right) } + \sin^2{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }\right) -\left(\cos^2{\left(\frac{\left(2k-1\right)\pi}{4n} \right) } -\sin^2{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }\right) \right) }\\
\prod\limits_{k=1}^{n}{2\sin^2{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }}\\
=\prod\limits_{k=1}^{n}{\frac{1}{2}\cdot 4\sin^2{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }}\\
=\frac{1}{2^{n}}\prod\limits_{k=1}^{n}{4\sin^2{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }}\\
=\frac{1}{2^{n}}\prod\limits_{k=1}^{n}{2\sin{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }}\prod\limits_{k=1}^{n}{2\sin{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }}\\
=\frac{1}{2^{n}}\prod\limits_{k=1}^{n}{2\sin{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }}\prod\limits_{k=1}^{n}{2\sin{\left(\frac{\left(2\left(n-k+1\right)-1\right)\pi}{4n} \right) }}\\
=\frac{1}{2^{n}}\prod\limits_{k=1}^{n}{2\sin{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }}\prod\limits_{k=1}^{n}{2\sin{\left(\frac{\pi}{2}-\frac{\left(2k-1\right)\pi}{4n} \right) }}\\
=\frac{1}{2^{n}}\prod\limits_{k=1}^{n}{2\sin{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }}\prod\limits_{k=1}^{n}{2\cos{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }}\\
=\frac{1}{2^{n}}\prod\limits_{k=1}^{n}{2\sin{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }\cdot 2\cos{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }}\\
=\frac{1}{2^{n}}\prod\limits_{k=1}^{n}{2\cdot 2\sin{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }\cos{\left(\frac{\left(2k-1\right)\pi}{4n} \right) }}\\
=\frac{1}{2^{n}}\prod\limits_{k=1}^{n}{2\sin{\left(\frac{\left(2k-1\right)\pi}{2n} \right) }}\\
}
}\)
Jak teraz pokazać że dla \(\displaystyle{ n>0}\)
\(\displaystyle{
\Large
{
\prod\limits_{k=1}^{n}{2\sin{\left(\frac{\left(2k-1\right)\pi}{2n} \right) }} = 2
}
}\)