3 zadania - dylatacja czasu, skrócenie długości...

Szczególna i ogólna teoria względności. Zjawiska relatywistyczne.
przemusik
Użytkownik
Użytkownik
Posty: 1
Rejestracja: 24 paź 2007, o 21:54
Płeć: Mężczyzna
Lokalizacja: Chorzów, Gliwice

3 zadania - dylatacja czasu, skrócenie długości...

Post autor: przemusik » 24 paź 2007, o 22:12

Próbowałem kilkukrotnie ruszyć te zadania, ale niestety poległem. Proszę o pomoc.

Zadania:
1. Średni czas życia mionu (jednej z cząstek elementarnych) oszacowano na 10^-8s. Miony powstają na skutek oddziaływania pierwotnego promieniowania kosmicznego z jądrami gazów atmosferycznych na wysokości ok. 80 km. Jaka musi być minimalna szybkość mionu, żeby można było go zarejestrować w laboratorium jądrowym na powierzchni Ziemi.

2. Elektron przebył różnicę potencjałów równą U=10^5 V. Obliczyć jaką osiągnął prędkość, uwzględniając efekt relatywistyczny przyrostu masy oraz porównać ją z prędkością obliczoną bez uwzględnienia efektu relatywistycznego. Masa spoczynkowa elektronu wynosi m0=9,1*10^-31 kg, ładunek elementarny e=1,6*10^-19 C. Prędkość światła w próżni c=3*10^8 m/s.

3. Długość nieruchomego pociągu jest dokładnie taka sama jak długość tunelu i wynosi Lo. Pociąg ten jedzie z prędkością v. Jak długo będzie trwał przejazd pociągu przez tunel według pasażera siedzącego w pociągu oraz według turysty stojącego koło tunelu? Czas przejazdu określamy jako odstęp czasu pomiędzy momentem, kiedy czoło pociągu mija wlot tunelu i chwilą gdy koniec ostatniego wagonu znajduje się przy końcowej krawędzi tunelu.

Pozdrawiam.

wasilijwolga
Użytkownik
Użytkownik
Posty: 1
Rejestracja: 18 paź 2010, o 18:50
Płeć: Mężczyzna
Lokalizacja: PL

3 zadania - dylatacja czasu, skrócenie długości...

Post autor: wasilijwolga » 18 paź 2010, o 18:54

Bardzo ciekawe jest to drugie zadanie, ma ktoś jakies pomysły? Z czego wyjść bo ja się zapetliłem

pawelooss
Użytkownik
Użytkownik
Posty: 2
Rejestracja: 17 kwie 2011, o 00:00
Płeć: Mężczyzna
Lokalizacja: Ruda Śląska
Podziękował: 2 razy

3 zadania - dylatacja czasu, skrócenie długości...

Post autor: pawelooss » 19 mar 2013, o 22:25

przemusik pisze:Próbowałem kilkukrotnie ruszyć te zadania, ale niestety poległem. Proszę o pomoc. (...)

3. Długość nieruchomego pociągu jest dokładnie taka sama jak długość tunelu i wynosi Lo. Pociąg ten jedzie z prędkością v. Jak długo będzie trwał przejazd pociągu przez tunel według pasażera siedzącego w pociągu oraz według turysty stojącego koło tunelu? Czas przejazdu określamy jako odstęp czasu pomiędzy momentem, kiedy czoło pociągu mija wlot tunelu i chwilą gdy koniec ostatniego wagonu znajduje się przy końcowej krawędzi tunelu.
Dla pasażera raczej nic się nie zmienia: \(\displaystyle{ t = \frac{L_{0}}{v}}\)

Dla obserwatora turysty ten czas powinien się wydłużyć, bo długość poruszającego się pociągu się skraca i musi on przebyć dłuższą drogę, by przejechać ten cały tunel. Tylko o ile dokładnie? Po prostu o: \(\displaystyle{ \sqrt{1-\frac{v^2}{c^2}}}\) ? Nie ma jakichś haczyków?

Awatar użytkownika
AiDi
Moderator
Moderator
Posty: 3637
Rejestracja: 25 maja 2009, o 22:58
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 29 razy
Pomógł: 676 razy

3 zadania - dylatacja czasu, skrócenie długości...

Post autor: AiDi » 20 mar 2013, o 10:21

wasilijwolga pisze:Bardzo ciekawe jest to drugie zadanie, ma ktoś jakies pomysły? Z czego wyjść bo ja się zapetliłem
Jest nieciekawe, bo jawnie niepoprawne. Masa nie rośnie. Koniec. Praca wszystkich sił jest równa zmianie energii kinetycznej: \(\displaystyle{ eU=(\gamma-1)mc^2}\). Tyle.
Dla pasażera raczej nic się nie zmienia: t = frac{L_{0}}{v}
A to niby czemu? Przecież tunel się względem pasażera porusza, zatem jego długość się zmieni.

ODPOWIEDZ