Wykaż równość - pierwiastki drugiego i trzeciego stopni

Proste problemy dotyczące wzorów skróconego mnożenia, ułamków, proporcji oraz innych przekształceń.
klaudyn
Użytkownik
Użytkownik
Posty: 2
Rejestracja: 24 paź 2007, o 17:38
Płeć: Kobieta
Lokalizacja: Faludża
Podziękował: 1 raz

Wykaż równość - pierwiastki drugiego i trzeciego stopni

Post autor: klaudyn » 24 paź 2007, o 19:21

\(\displaystyle{ \sqrt[3]{9-\sqrt[2]{80}}+\sqrt[3]{9+\sqrt[2]{80}}=3}\)

Jak to rozwiązać ?
Ostatnio zmieniony 24 paź 2007, o 21:18 przez klaudyn, łącznie zmieniany 1 raz.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

andkom
Użytkownik
Użytkownik
Posty: 636
Rejestracja: 10 paź 2007, o 12:57
Płeć: Mężczyzna
Lokalizacja: Łódź
Pomógł: 350 razy

Wykaż równość - pierwiastki drugiego i trzeciego stopni

Post autor: andkom » 24 paź 2007, o 20:08

\(\displaystyle{ \sqrt[3]{9\pm\sqrt[2]{80}}=\frac{\sqrt[3]{8(9\pm\sqrt[2]{80})}}2=\\
=\frac{\sqrt[3]{72\pm8\sqrt[2]{80}}}2=\frac{\sqrt[3]{72\pm32\sqrt[2]{5}}}2
=\frac{\sqrt[3]{27\pm27\sqrt[2]{5}+45\pm5\sqrt[2]{5}}}2=\\
=\frac{\sqrt[3]{3^3\pm3\cdot3^2\cdot\sqrt[2]{5}+3\cdot3\cdot(\sqrt[2]{5})^2\pm(\sqrt[2]{5})^3}}2=\\
=\frac{\sqrt[3]{(3\pm\sqrt[2]{5})^3}}2=\frac{3\pm\sqrt[2]{5}}2}\)

Stąd
\(\displaystyle{ \sqrt[3]{9+\sqrt[2]{80}}+\sqrt[3]{9-\sqrt[2]{80}}=\\
\frac{3+\sqrt[2]{5}}2+\frac{3-\sqrt[2]{5}}2=3}\)

Awatar użytkownika
Szemek
Gość Specjalny
Gość Specjalny
Posty: 4819
Rejestracja: 10 paź 2006, o 23:03
Płeć: Mężczyzna
Lokalizacja: Gdańsk
Podziękował: 43 razy
Pomógł: 1407 razy

Wykaż równość - pierwiastki drugiego i trzeciego stopni

Post autor: Szemek » 24 paź 2007, o 20:13

oznaczam
\(\displaystyle{ \sqrt[3]{9-\sqrt{80}}+\sqrt[3]{9+\sqrt{80}}=x}\)
podnoszę obie strony do sześcianu
\(\displaystyle{ (9-\sqrt{80})+3\sqrt[3]{(9-\sqrt{80})^2 (9+\sqrt{80})} +3\sqrt[3]{(9+\sqrt{80})^2 (9-\sqrt{80})}+(9+\sqrt{80})=x^3}\)
\(\displaystyle{ 18+3\sqrt[3]{(81-80)(9-\sqrt{80})}+3\sqrt[3]{(81-80)(9+\sqrt{80})}=x^3}\)
\(\displaystyle{ 18+3\left(\sqrt[3]{9-\sqrt{80}}+\sqrt[3]{9+\sqrt{80}}\right)=x^3}\)
za wyrażenie w nawiasie podstawiam x
\(\displaystyle{ 18+3x=x^3}\)
\(\displaystyle{ x^3-3x-18=0}\)
\(\displaystyle{ (x-3)(x^2+3x+6)=0}\)
jedynym rzeczywistym rozwiązaniem jest liczba 3

ODPOWIEDZ