Strona 1 z 1

Układ nierówności

: 14 gru 2023, o 23:30
autor: RagaiH
Wyznaczyć wszystkie rzeczywiste rozwiązania układu nierówności:

\(\displaystyle{ \begin{cases} 2xy-z ^{2} \ge 1 , \\ z-\left| x+y\right| \ge -1 . \end{cases} }\)

Re: Układ nierówności

: 16 gru 2023, o 06:17
autor: kerajs
Te wszystkie rozwiązania to \(\displaystyle{ x=y=z=1}\) oraz \(\displaystyle{ x=y=-z=-1}\) .

Dodano po 4 godzinach 42 minutach 11 sekundach:
hint:    

Re: Układ nierówności

: 17 gru 2023, o 03:40
autor: RagaiH
\(\displaystyle{ \begin{cases} 2xy-z ^{2} \ge 1 &\text{(1) } \\ z-\left| x+y\right| \ge -1 &\text{(2) } \end{cases} }\)

(2):
\(\displaystyle{ z+1 \ge \left| x+y\right| }\)
\(\displaystyle{ (z+1) ^{2} \ge (x+y) ^{2} }\)
\(\displaystyle{ z ^{2} +2z+1 -x ^{2}-2xy-y ^{2} \ge 0 }\)

(1):
\(\displaystyle{ 2xy-z ^{2} \ge 1/ \cdot 2}\)
\(\displaystyle{ 4xy-2z ^{2}-2 \ge 0 }\)

(1)+(2):
\(\displaystyle{ z ^{2}-2z ^{2}+2z+1-2-x ^{2}-2xy+4xy-y ^{2} \ge 0 }\)
\(\displaystyle{ -z ^{2} +2z-1-x ^{2}+2xy-y ^{2} \ge 0/ \cdot (-1)}\)
\(\displaystyle{ z ^{2} -2z+1+x ^{2}-2xy+y ^{2} \le 0 }\)
\(\displaystyle{ (z-1) ^{2} +(x-y) ^{2} \le 0}\)

suma kwadratów nieujemna zatem:

\(\displaystyle{ z-1=0 \Rightarrow z=1}\)
\(\displaystyle{ x-y=0 \Rightarrow x=y}\)

(1):
\(\displaystyle{ 2xy-z ^{2} \ge 1}\)
\(\displaystyle{ 2x ^{2} \ge 2}\)
\(\displaystyle{ x ^{2} \ge 1 }\)
\(\displaystyle{ x \le -1 \vee x \ge 1 }\)

\(\displaystyle{ (2):}\)
\(\displaystyle{ z-\left| z+y\right| \ge -1}\)
\(\displaystyle{ \left| 2x\right| \le 2}\)
\(\displaystyle{ x \le 1 \wedge x \ge -1}\)

(1) \(\displaystyle{ \wedge}\) (2):
\(\displaystyle{ x=-1 \vee x=1}\)

zatem \(\displaystyle{ (x, y, z)=(1, 1, 1)}\) lub \(\displaystyle{ (-1, -1, 1)}\).