Strona 1 z 1

Mix sinusa

: 3 gru 2023, o 14:29
autor: mol_ksiazkowy
Wyznaczyć możliwie największe \(\displaystyle{ k}\) takie, że \(\displaystyle{ |(1+ \sqrt{n} )\sin( \pi \sqrt{n}) | >k}\) dla dowolnej liczby naturalnej \(\displaystyle{ n}\), która nie jest kwadratem liczby całkowitej.
Ukryta treść:    

Re: Mix sinusa

: 4 gru 2023, o 18:06
autor: arek1357
Tytuł zadania mnie irytuje bo powinno być max sinusa a nie mix sinusa, mix to może być pierogów na talerzu...

I jeżeli:\(\displaystyle{ n=k^2}\)

To całe to wyrażenie wynosi zero...

Teraz jeżeli chcemy wyszukać minima dla \(\displaystyle{ n \neq k^2}\) to nałeży szukać jak najbliżej \(\displaystyle{ k^2}\)

Czyli dla:

\(\displaystyle{ n:=n^2+1 \vee n:=n^2-1}\)

Więc po prostu mamy coś takiego:

\(\displaystyle{ \left| \sin \pi \sqrt{n^2+1} \right| =\left| \sin\left( \pi n+ \frac{\pi}{n+ \sqrt{n^2+1} } \right)\right|=\left|\sin \pi n \cos \frac{\pi}{n+ \sqrt{n^2+1} }( = 0) +\cos \pi n \sin \frac{\pi}{n+ \sqrt{n^2+1} } \right|=\sin \frac{\pi}{n+ \sqrt{n^2+1} } }\)

\(\displaystyle{ a_{n}=\left( 1+ \sqrt{n^2+1} \right)\sin \frac{\pi}{n+ \sqrt{n^2+1} } = \sin \frac{\pi}{n+ \sqrt{n^2+1} } +n \cdot \sin \frac{\pi}{n+ \sqrt{n^2+1} } + \frac{\sin \frac{\pi}{n+ \sqrt{n^2+1} } }{n+ \sqrt{n^2+1} } }\)

ze wzoru:

\(\displaystyle{ \sqrt{n^2+1}=n+ \frac{1}{n+ \sqrt{n^2+1}} }\)

Ciąg: \(\displaystyle{ a_{n}}\) jest rosnący

Pierwszy i ostatni wyraz zdąża do zera

Trzeci składnik liczyłem na szybko upodlając się z del'Hospitala...

\(\displaystyle{ \frac{\pi}{2} }\)

podobnie chyba wyjdzie dla:

\(\displaystyle{ \sqrt{n^2-1} }\)

co sugeruje, że:

\(\displaystyle{ k= \frac{\pi}{2} }\)