Strona 1 z 1

Długość boków przy danej środkowej i dwóch kątach.

: 30 wrz 2023, o 19:50
autor: ilonek
Dzień dobry!

Poproszę o pomoc.

Środkowa BD trójkąta ABC ma długość 6 i dzieli kąt \(\displaystyle{ \beta }\) w ten sposób, że \(\displaystyle{ \angle CBD =30 ^{o} }\) i \(\displaystyle{ \angle ABD = 45 ^{o} }\). Mam rozpisane trzy twierdzenia cosinusów i stopień skomplikowania równań jest znaczny. Czy jest na to jakiś inny sposób?

Re: Długość boków przy danej środkowej i dwóch kątach.

: 30 wrz 2023, o 22:29
autor: piasek101
Zacząć od twierdzenia sinusów.

Re: Długość boków przy danej środkowej i dwóch kątach.

: 30 wrz 2023, o 22:32
autor: ilonek
Dla dużego trójkąta czy dla któregoś z tych mniejszych?

Re: Długość boków przy danej środkowej i dwóch kątach.

: 30 wrz 2023, o 22:55
autor: piasek101
Dla dużego i małego - aby mieć ten sam kąt + drugi dany. Układ równań - jedna z długości (połowa boku AC) skróci się.

Re: Długość boków przy danej środkowej i dwóch kątach.

: 30 wrz 2023, o 23:55
autor: matmatmm
Ja napisałem twierdzenie sinusów w trójkątach \(\displaystyle{ \triangle CBD}\) oraz \(\displaystyle{ \triangle ABD}\). Po podstawieniu wyszło mi

\(\displaystyle{ \frac{BC}{AB}=\frac{\sin 45}{\sin 30}=\sqrt{2}}\).

Potem twierdzenie cosinusów w dużym trójkącie i wychodzi

\(\displaystyle{ \frac{AC}{AB}=\sqrt{3-2\sqrt{2}\cos75}=\sqrt{4-\sqrt{3}}}\).

Wreszcie ze wzoru na środkową wychodzi

\(\displaystyle{ \frac{AB}{BD}=\frac{2}{\sqrt{2+\sqrt{3}}}=\sqrt{6}-\sqrt{2}}\).

Reszta to formalność.

Re: Długość boków przy danej środkowej i dwóch kątach.

: 1 paź 2023, o 19:15
autor: ilonek
Dziękuję. Wyszło.